
helga Documentation
Release 1.7.12

Shaun Duncan

Dec 19, 2018

Contents

1 About 3

2 Supported Backends 5

3 Features 7

4 Contributing 9

5 License 11

6 Contents 13
6.1 Getting Started . 13
6.2 Configuring Helga . 15
6.3 Plugins . 18
6.4 Webhooks . 32
6.5 Builtin Features . 36
6.6 API Documentation . 38

7 Indices and Tables 63

Python Module Index 65

i

ii

helga Documentation, Release 1.7.12

Contents 1

https://travis-ci.org/shaunduncan/helga
https://coveralls.io/r/shaunduncan/helga?branch=master
https://pypi.python.org/pypi/helga
https://pypi.python.org/pypi/helga

helga Documentation, Release 1.7.12

2 Contents

CHAPTER 1

About

Helga is a full-featured chat bot for Python 2.6/2.7 using Twisted. Helga originally started as a python fork of a perl-
based IRC bot olga, but has grown considerably since then. Early versions limited to support to IRC, but now include
other services like XMPP and HipChat.

3

https://twistedmatrix.com/trac/
https://github.com/thepeopleseason/olga

helga Documentation, Release 1.7.12

4 Chapter 1. About

CHAPTER 2

Supported Backends

As of version 1.7.0, helga supports IRC, XMPP, and HipChat out of the box. Note, however, that helga originally
started as an IRC bot, so much of the terminology will reflect that. The current status of XMPP and HipChat support
is very limited and somewhat beta. In the future, helga may have a much more robust and pluggable backend system
to allow connections to any number of chat services.

5

helga Documentation, Release 1.7.12

6 Chapter 2. Supported Backends

CHAPTER 3

Features

• A simple and robust plugin api

• HTTP webhooks support and webhook plugins

• Channel logging and browsable web UI

• Event driven behavior for plugins

• Support for IRC, XMPP, and HipChat

7

helga Documentation, Release 1.7.12

8 Chapter 3. Features

CHAPTER 4

Contributing

Contributions are always welcomed, whether they be in the form of bug fixes, enhancements, or just bug reports. To
report any issues, please create a ticket on github. For code changes, please note that any pull request will be denied a
merge if the test suite fails.

If you are looking to get help with helga, join the #helgabot IRC channel on freenode.

9

https://github.com/shaunduncan/helga/issues

helga Documentation, Release 1.7.12

10 Chapter 4. Contributing

CHAPTER 5

License

Copyright (c) 2014 Shaun Duncan

Helga is open source software, dual licensed under the MIT and GPL licenses. Dual licensing was chosen for this
project so that plugin authors can create plugins under their choice of license that is compatible with this project.

11

helga Documentation, Release 1.7.12

12 Chapter 5. License

CHAPTER 6

Contents

6.1 Getting Started

6.1.1 Requirements

All python requirements for running helga are listed in requirements.txt. Helga supports SSL connections to
a chat server (currently IRC, XMPP, and HipChat); in order to compile SSL support, you will need to install both
openssl and libssl-dev packages, as well as libffi6 and libffi-dev (the latter are required for cffi,
needed by pyOpenSSL version 0.14 or later).

Optionally, you can have Helga configured to connect to a MongoDB server. Although this is not strictly required,
many plugins require a connection to operate, so it is highly recommended. “Why MongoDB”, you ask? Since Mon-
goDB is a document store, it is much more flexible for changing schema definitions within plugins. This completely
eliminates the need for Helga to manage schema migrations for different plugin versions.

Important: Helga is currently only supported and tested for Python versions 2.6 and 2.7

6.1.2 Installing

Helga is hosted in PyPI. For the latest version, simply install:

Note, that if you follow the development instructions below and wish to install helga in a virtualenv, you will need
to activate it prior to installing helga using pip. In the future, there may be a collection of .rpm or .deb packages for
specific systems, but for now, pip is the only supported means of install.

6.1.3 Deploying with Docker

Helga can now be run in docker. In this you’ll build the docker image yourself, then run it using the docker command.
It is recommended that you only use this method if you are already familiar with docker.

13

helga Documentation, Release 1.7.12

$ docker build -t <image:tag> .
$ docker run -d [opts] <image:tag> [opts]

The opts you can choose in the run command are standard options for running docker. If you want to use a settings file
that is non-standard, or a persistant datbase, you’ll want to use the -v option to mount those volumes. Additionally,
you may add opts to the helga command after specifying the image you’re building.

Some gotchas: If you’re mounting a volume with -v you will need to specify the full path to the directory containing
the files you want shared.

If you’re using an altenative settings file you’ll need to add the –settings=/path/to/file.py opt to the run command.

If you are using an local mongodb, you’ll need to mount it like below, and make sure your settings file reflects the
mounted file.

$ docker run -d -v /home/settings:/opt/settings helga:16.04 --settings=/opt/settings/
→˓my_settings.py
$ docker run -d -v /path/to/mongodb:/opt/mongodb helga:16.04

6.1.4 Development Setup

To setup helga for development, start by creating a virtualenv and activating it:

$ virtualenv helga
$ cd helga
$ source bin/activate

Then grab the latest copy of the helga source:

$ git clone https://github.com/shaunduncan/helga src/helga
$ cd src/helga
$ python setup.py develop

Installing helga this way creates a helga console script in the virtualenv’s bin directory that will start the helga
process. Run it like this:

$ helga

6.1.5 Using Vagrant

Alternatively, if you would like to setup helga to run entirely in a virtual machine, there is a Vagrantfile for you:

$ git clone https://github.com/shaunduncan/helga
$ cd helga
$ vagrant up

This will provision an ubuntu 12.04 virtual machine with helga fully installed. It will also ensure that IRC and
MongoDB servers are running as well. The VM will have ports 6667 and 27017 for IRC and MongoDB respectively
forwarded from the host machine, as well as private network IP 192.168.10.101. Once this VM is up and running,
simply:

$ vagrant ssh
$ helga

14 Chapter 6. Contents

helga Documentation, Release 1.7.12

The source directory includes an irssi configuration file that connects to the IRC server at localhost:6667 and auto-joins
the #bots channel; to use this simply run from the git clone directory:

$ irssi --home=.irssi

6.1.6 Running Tests

Helga has a full test suite for its various components. Since helga is supported for multiple python versions, tests are
run using tox, which can be run entirely with helga’s setup.py.

$ python setup.py test

Alternatively, if you would like to run tox directly:

$ pip install tox
$ tox

Helga uses pytest as it’s test runner, so you can run individual tests if you like, but you will need to install test
requirements:

$ pip install pytest mock pretend freezegun
$ py.test

6.1.7 Building Docs

Much like the test suite, helga’s documentation is built using tox:

$ tox -e docs

Or alternatively (with installing requirements):

$ pip install sphinx alabaster
$ cd docs
$ make html

6.2 Configuring Helga

As mentioned in Getting Started, when you install helga, a helga console script is created that will run the bot
process. This is the simplest way to run helga, however, it will assume various default settings like assuming that both
an IRC and MongoDB server to which you wish to connect run on your local machine. This may not be ideal for
running helga in a production environment. For this reason you may wish to create your own configuration for helga.

6.2.1 Custom Settings

Helga settings files are essentially executable python files. If you have ever worked with django settings files, helga
settings will feel very similar. Helga does assume some configuration defaults, but you can (and should) use a custom
settings file. The behavior of any custom settings file you use is to overwrite any default configuration helga uses. For
this reason, you do not need to apply all of the configuration settings (listed below) known. For example, a simple
settings file to connect to an IRC server at example.com on port 6667 would be:

6.2. Configuring Helga 15

http://www.irssi.org/
https://tox.readthedocs.org/en/latest/
http://pytest.org/latest/

helga Documentation, Release 1.7.12

SERVER = {
'HOST': 'example.com',
'PORT': 6667,

}

There are two ways in which you can use a custom settings file. First, you could export a HELGA_SETTINGS
environment variable. Alternatively, you can indicate this via a --settings argument to the helga console script.
For example:

$ export HELGA_SETTINGS=foo.settings
$ helga

Or:

$ helga --settings=/etc/helga/settings.py

In either case, this value should be an absolute filesystem path to a python file like /path/to/foo.py, or a python
module string available on $PYTHONPATH like path.to.foo.

6.2.2 Default Configuration

Running the helga console script with no arguments will run helga using a default configuration, which assumes that
you are wishing to connect to an IRC server. For a full list of the included default settings, see helga.settings.

6.2.3 XMPP Configuration

Helga was originally written as an IRC bot, but now includes XMPP support as well. Since its background as an IRC
bot, much of the language in the documentation and API are geared towards that. For instance, multi user chat rooms
are referred to as ‘channels’ and users are referred to by a ‘nick’. The default helga configuration will assume that
you want to connect to an IRC server. To enable XMPP connections, you must specify a TYPE value of xmpp in your
SERVER settings:

SERVER = {
'HOST': 'example.com',
'PORT': 5222,
'TYPE': 'xmpp',
'USERNAME': 'helga',
'PASSWORD': 'hunter2',

}

Note above that you also must specify a value for USERNAME and PASSWORD, which will result in a Jabber ID (JID)
of something like helga@example.com. The also assumes that the multi user chat (MUC) domain for your xmpp
server is conference.example.com. This might not always be desirable. For this reason, you can also specify
specific JID and MUC values using the keys JID and MUC_HOST respectively. In this instance, the specific JID is
used to authenticate and username is not required:

SERVER = {
'HOST': 'example.com',
'PORT': 5222,
'TYPE': 'xmpp',
'PASSWORD': 'hunter2',
'JID': 'someone@example.com',
'MUC_HOST': 'chat.example.com',

}

16 Chapter 6. Contents

helga Documentation, Release 1.7.12

Also, just like IRC support, helga can automatically join chat rooms configured in the setting CHANNELS. You can
configure this a couple of different ways, the easiest being a shorthand version of the room name, prefixed with a ‘#’.
For example, given a room with a JID of bots@conf.example.com, the setting might look like:

CHANNELS = [
'#bots',

]

Alternatively, you can specify the full JID:

CHANNELS = [
'bots@conf.example.com',

]

Just like IRC, you can specify a room password using a two-tuple:

CHANNELS = [
('#bots', 'room_password'),

]

HipChat Support

HipChat allows for clients to connect to its service using XMPP. If you are intending to use helga as a HipChat bot,
you will first need to take note of the settings needed to connect (see HipChat XMPP Settings). This also applies to
anyone using the self-hosted HipChat server. A server configuration for connecting to HipChat might look like:

SERVER = {
'HOST': 'chat.hipchat.com',
'PORT': 5222,
'JID': '00000_00000@chat.hipchat.com',
'PASSWORD': 'hunter2',
'MUC_HOST': 'conf.hipchat.com',
'TYPE': 'xmpp',

}

HipChat makes a few assumtions that are different from standard XMPP clients. First, you must specify the NICK
setting as the user’s first name and last name:

NICK = 'Helga Bot'

Also, if you want @ mentions to work with command plugins so that this will work:

@HelgaBot do something

Set COMMAND_PREFIX_BOTNICK as the string ‘@?’ + the @ mention name of the user. For example, if the @
mention name is ‘HelgaBot’:

COMMAND_PREFIX_BOTNICK = '@?HelgaBot'

Finally, HipChat does not require that room members have unique JID values. Considering a user in a room might have
a JID of room@host/user_nick, the default XMPP backend assumes that user_nick is unique. HipChat does
something a little different and assumes that the resource portion of the JID is the user’s full name like room@host/
Jane Smith, which may not be unique. This means that replies from the bot that include a nick will say ‘Jane
Smith’ rather than an @ mention like ‘@JaneSmith’. To enable @ mentions for bot replies, you should install the
hipchat_nicks plugin and add HIPCHAT_API_TOKEN to your settings file:

6.2. Configuring Helga 17

https://www.hipchat.com/
https://hipchat.com/account/xmpp
mailto:'@JaneSmith
https://github.com/shaunduncan/helga-hipchat-nicks

helga Documentation, Release 1.7.12

$ pip install helga-hipchat-nicks
$ echo 'HIPCHAT_API_TOKEN = "your_token"' >> path/to/your/settings.py

Slack Support

Slack supports rich formatting for messaging, and Helga includes a connector for Slack’s APIs. A configuration for
connecting to Slack might look like:

SERVER = {
'TYPE': 'slack',
'API_KEY': 'xoxb-12345678901-A1b2C3deFgHiJkLmNoPqRsTu',

}

When you set up a new bot API key, Slack will prompt you to configure the bot’s username. This will be Helga’s
nickname, and Helga will figure it out automatically, so do not specify NICK in your configuration. Similarly, Slack
uses the “@ mentions” syntax for addressing nicks, and the connector has support for this, so you should not set
COMMAND_PREFIX_BOTNICK in your configuration.

6.3 Plugins

One of the most prominent features of helga is its support for plugins and plugin architecture. At their core, plugins are
essentially standalone, installable python packages. There are few small rules to follow, but creating custom plugins
is an incredibly easy process.

6.3.1 Plugin Types

Plugins have a notion of type. This essentially means that they have predefined expectations for how they behave. At
this time, there are three types of plugins:

Commands

Plugins of this type require a user to specifically ask to perform some action. For example, a command plugin behave
like this:

<sduncan> helga google something
<helga> no results found for "something"

(see Command Plugins)

Matches

Plugins of this type are intended to be a form of autoresponder that aim to provide some extra meaning or context to
what a user has said in a chat. For example, a match plugin could provide extra details if someone says ‘foo’:

<sduncan> I'm talking about foo in this message
<helga> sduncan just said 'foo'

(see Match Plugins)

18 Chapter 6. Contents

https://www.slack.com/

helga Documentation, Release 1.7.12

Preprocessors

Plugins of this type generally don’t respond. However, they can modify the original message that will be received by
command or match plugins.

(see Preprocessor Plugins)

6.3.2 Plugin Priorities

Plugins also have a notion of priority that affect the order in which the plugin manager will process them. Priorities
can be any numerical value, but as a rule of thumb, the higher the number, the more important a plugin will be.
More important plugins will be processed first. Note, however, that preprocessor type plugins will always run before
command and match plugins. Therefore, preprocessors will only be weighted against other preprocessors. Commands
and matches are weighted against other commands and matches.

The helga.plugins module has three values that may be useful for indicating the priority of a plugin:

• PRIORITY_LOW

• PRIORITY_NORMAL

• PRIORITY_HIGH

The actual values of these priorities can be fine tuned via custom settings (see Configuring Helga). Unless specifically
indicated, each plugin type assumes a default priority:

• Preprocessors have a default priority of PRIORITY_NORMAL

• Commands have a default priority of PRIORITY_NORMAL

• Matches have a default priority of PRIORITY_LOW

6.3.3 Creating Plugins with Decorators

Helga comes with an easy-to-use decorator API for writing simple plugins. For the most part, this is the preferred way
of creating custom plugins. In a nutshell, there are decorators in helga.plugins that correspond to each plugin
type:

• @command

• @match

• @preprocessor

Command Plugins

Command plugins are those which require you to ask in order to perform some action. For these types of plugins, you
will use the @command decorator:

helga.plugins.command(command, aliases=None, help=”, priority=50, shlex=False)
A decorator for creating command plugins

Parameters

• command – The command string, i.e. ‘search’ for a command ‘helga search foo’

• aliases – A list of command aliases. If a command ‘search’ has an alias list [‘s’], then
‘helga search foo’ and ‘helga s foo’ will both run the command.

• help – An optional help string for the command. This is used by the builtin help plugin.

6.3. Plugins 19

helga Documentation, Release 1.7.12

• priority – The priority of the plugin. Default is PRIORITY_NORMAL.

• shlex – A boolean indicating whether to use shlex arg string parsing rather than naive
whitespace splitting.

Decorated functions should follow this pattern:

helga.plugins.func(client, channel, nick, message, cmd, args)

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

• message – The full message string received from the server

• cmd – The parsed command string which could be the registered command or one of the
command aliases

• args – The parsed command arguments as a list, i.e. any content following the command.
For example: helga foo bar baz would be ['bar', 'baz']

Returns String or list of strings to return via chat. None or empty string or list for no response

For example:

from helga.plugins import command

@command('foo', aliases=['f'], help='The foo command')
def foo(client, channel, nick, message, cmd, args):

return u'You said "helga foo"'

For argument parsing, there are currently two supported behaviors. The default is to perform whitespace splitting on
the argument string. For example, given a command:

helga foo bar "baz qux"

the resulting args list to the command function would be:

['bar', '"baz', 'qux"']

For some plugins, this may be less than ideal. Therefore, you can optionally pass shlex=True to the @command
decorator. This changes the behavior in such a way that in the previous example, the resulting args list would be:

['bar', 'baz qux']

This behavior can also be configured globally by configuring COMMAND_ARGS_SHLEX = True in your settings
file (see Default Configuration)

Important: Shlex argument parsing will become the default behavior in a future version of helga.

20 Chapter 6. Contents

helga Documentation, Release 1.7.12

Match Plugins

Match plugins are those that are intended to be a form of autoresponder. They are meant to provide some extra meaning
or context to what a user has said in chat. For these types of plugins, you will use the @match decorator:

helga.plugins.match(pattern, priority=25)
A decorator for creating match plugins

Parameters

• pattern – A regular expression string used to match against a chat message. Optionally,
this argument can be a callable that accepts a chat message string as its only argument and
returns a value that can be evaluated for truthiness.

• priority – The priority of the plugin. Default is PRIORITY_LOW

Decorated match functions should follow this pattern:

helga.plugins.func(client, channel, nick, message, matches)

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

• message – The full message string received from the server

• matches – The result of re.findall if decorated with a regular expression, otherwise
the return value of the callable passed

Returns String or list of strings to return via chat. None or empty string or list for no response

For example:

from helga.plugins import match

@match(r'foo')
def foo(client, channel, nick, message, matches):

return u'{0} said foo'.format(nick)

In most cases, this decorator will have a single regular expression as its argument. However, it can also accept a
callable. This callable should accept a single argument: the message contents received from the chat server. There is
no explicit return value type, but the return value should be able to be evaluated for truthiness. When that return value
has truth, then the decorated function will be called. For example:

import time
from helga.plugins import match

def match_even(message):
if int(time.time()) % 2 == 0:

return 'Even Time!'

@match(match_even)
def even(client, channel, nick, message, matches):

Will send 'Match: Even Time!' to the server
return u'Match: {0}'.format(matches)

6.3. Plugins 21

helga Documentation, Release 1.7.12

Preprocessor Plugins

Preprocessor plugins generally don’t respond. Instead, they are intended to potentially modify the original chat
message that will be received by command or match plugins. For these types of plugins, you will use the
@preprocessor decorator:

helga.plugins.preprocessor(priority=50)
A decorator for creating preprocessor plugins

Parameters priority – The priority of the plugin. Default is PRIORITY_NORMAL

Decorated preprocessor functions should follow this pattern:

helga.plugins.func(client, channel, nick, message, matches)

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

• message – The full message string received from the server

Returns a three-tuple (channel, nick, message) containing any modifications

For example:

from helga.plugins import preprocessor

@preprocessor
def foo(client, channel, nick, message):

Other plugins will think the message argument is what is returned
return channel, nick, 'NOT THE ORIGINAL MESSAGE'

Decorator Chaining

The decorators for commands, matches, and preprocessors can be chained for more complex behavior. For example,
should you wish to have a command that could add or remove patterns for a match, you could chain both @command
and @match. Note, however, that each plugin type decorator expects that decorated functions accept a specific number
of arguments. For this reason, it is best to use *args and argument length checking (this may change in the future).
For example, let’s say we want a plugin that will match a dynamic set of patterns, but also gives the ability to add or
remove patterns and modifies the incoming message by prepending text to indicate that it has been processed:

import re
from helga.plugins import command, match, preprocessor

PATTERNS = set()

def check(message):
global PATTERNS
return re.findall('({0})'.format('|'.join(PATTERNS)))

@preprocessor
@match(check)

(continues on next page)

22 Chapter 6. Contents

helga Documentation, Release 1.7.12

(continued from previous page)

@command('matcher', help='Usage: helga (add|remove) <pattern>')
def matcher(client, channel, nick, message, *args):

global PATTERNS

if len(args) == 0:
Preprocessor
return channel, nick, u'[matcher] {0}'.format(message)

elif len(args) == 1:
Match - args[0] is return value of check(), re.findall
found_list = args[0]
return u'What you said matched: {0}'.format(found_list)

elif len(args) == 2:
Command: args[1] is the parsed argument string
command, pattern = args[1][:2]
if command == 'add':

PATTERNS.add(pattern)
return u'Added {0}'.format(pattern)

else:
PATERNS.discard(pattern)
return u'Removed {0}'.format(pattern)

Note, decorator chaining is only one way to create complex behavior for plugins. There is also a class-based plugin
API (see Class-Based Plugins)

6.3.4 Handling Unicode

Plugins should try to deal exclusively with unicode as much as possible. This is important to keep in mind since
all plugins that accept string arguments will receive unicode strings specifically and not byte strings. For the most
part, helga’s client connection assumes a UTF-8 encoding for all incoming messages. Note, though, that plugins that
don’t explicitly return unicode responses will not fail; the internal plugin manager will implicitly handle convertng all
responses to the correct format (unicode or byte strings) needed by the chat server. There are also useful utilities for
dealing with unicode support in plugins found in helga.util.encodings:

• from_unicode

• from_unicode_args

• to_unicode

• to_unicode_args

6.3.5 Accessing The Database

As mentioned in Requirements, MongoDB is highly recommended, but not required dependency. Having a MongoDB
server that helga can use means that plugins can store data for use across restarts. This may be incredibly useful
depending on the needs of your plugin. If your MongoDB connection is configured properly according to Core
Settings, two pymongo objects in helga.db will be available for use:

• helga.db.client: A pymongo MongoClient object, the connection client to MongoDB

• helga.db.db: A pymongo Database object, the default MongoDB database to use

Using this database connection in a plugin is very simple:

6.3. Plugins 23

http://api.mongodb.org/python/current/
http://api.mongodb.org/python/current/api/pymongo/mongo_client.html#pymongo.mongo_client.MongoClient
http://api.mongodb.org/python/current/api/pymongo/database.html#pymongo.database.Database

helga Documentation, Release 1.7.12

from helga.db import db

db.my_collection.insert({'foo': 'bar'})
db.my_collection.find()

For more information on using this, see the pymongo API documentation.

Note: Should helga not be configured properly for MongoDB, or should a connection to MongoDB fail, the database
object helga.db.db will explicitly be None. Therefore, it may be important for plugins that depend on MongoDB
to check for this condition.

6.3.6 Requiring Settings

In many instances, plugins may require some configurable setting in a custom helga settings file (see Custom Settings).
As a general rule of thumb, configurable settings should be documented by a plugin but in no way should expect that
they be present in helga.settings. Plugins should use getattr for retrieving custom settings and assume some
default value:

from helga import settings

my_setting = getattr(settings, 'MY_SETTING_VALUE', 42)

Also, although not explicitly required, settings names should be prefixed with the name of the plugin. This should help
in organizing custom settings. For example, if a plugin foo uses a custom setting SOME_VALUE, then try to expect a
setting FOO_SOME_VALUE.

6.3.7 Communicating Asynchronously

In some cases, plugins may need to perform some blocking action such as communicating with an external API. If a
plugin were to perform this action and directly return a string response, this may block other plugins from processing.
To get around this concern, plugins can, instead of returning a response, raise ResponseNotReady . This will
indicate to helga’s plugin manager that a response may be sent at some point in the future. In this instance, helga will
continue to process other plugins, unless configured to only return first response, in which case no other plugins will
be processed (see Default Configuration). For example:

from helga.plugins import command, ResponseNotReady

@command('foo')
def foo(client, channel, nick, message, cmd, args):

Run some async action
raise ResponseNotReady

In order to actually invoke some asynchronous action, most plugins can and should utilize the fact that helga is built
using Twisted by calling twisted.internet.reactor.callLater. For example:

from twisted.internet import reactor

def do_something(arg, kwarg=None):
print arg or kwarg

Have the event loop run `do_something` in 30 seconds
reactor.callLater(30, do_something, None, kwarg='foo')

24 Chapter 6. Contents

http://api.mongodb.org/python/current/
https://twistedmatrix.com/trac/

helga Documentation, Release 1.7.12

For more details on this see the Twisted Documentation. To revisit the previous plugin example:

from twisted.internet import reactor
from helga.plugins import command, ResponseNotReady

def foo_async(client, channel, args):
client.msg(channel, 'someone ran the foo command with args: {0}'.format(args))

@command('foo')
def foo(client, channel, nick, message, cmd, args):

reactor.callLater(5, foo_async, client, channel, args)
raise ResponseNotReady

Notice above that the callback function foo_async takes the client connection as an argument. Should a plugin
need to respond asynchronously to the server, it is generally a good idea for deferred callbacks to accept at a minimum
the client and the channel of the message. In addition, there are several useful methods of both helga.comm.irc.
Client and helga.comm.xmpp.Client that can be used for asynchronous communication:

• helga.comm.irc.Client.msg()

• helga.comm.irc.Client.me()

• helga.comm.xmpp.Client.msg()

• helga.comm.xmpp.Client.me()

6.3.8 Signals/Notifications of Helga Events

Helga makes heavy use of signals for events provided by smokesignal. In this way, plugins can receive notifications
when some event occurs and perform some action such as loading data from the database or setting some preferred
state. At this time, there are several included signals that fire on given events and provide callbacks with certain
arguments:

started Fired when the helga process starts. Callbacks should accept no arguments.

signon Fired when helga successfully connects to the chat server. Callbacks should follow:

func(client)

Parameters client – an instance of helga.comm.irc.Client or helga.comm.
xmpp.Client depending on the server type

join Fired when helga joins a channel. Callbacks should follow:

func(client, channel)

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client depending on the server type

• channel – the name of the channel

left Fired when helga leaves a channel. Callbacks should follow:

func(client, channel)

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client depending on the server type

• channel – the name of the channel

6.3. Plugins 25

https://twistedmatrix.com/trac/wiki/Documentation
https://github.com/shaunduncan/smokesignal

helga Documentation, Release 1.7.12

user_joined Fired when a user joins a channel helga is in. Callbacks should follow:

func(client, nick, channel)

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client depending on the server type

• nick – the nick of the user that joined

• channel – the name of the channel

user_left Fired when a user leaves a channel helga is in. Callbacks should follow:

func(client, nick, channel)

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client depending on the server type

• nick – the nick of the user that left

• channel – the name of the channel

6.3.9 Packaging and Distribution

If you have created a simple helga plugin, you may be asking “What now?”. Helga, rather than using plugin directories
containing lots of one-off scripts, makes use of proper python packaging to manage plugin installation. This may be a
bit of an advanced topic if you are new to python packaging, but for the most part, you can follow a small number of
repeatable steps for simple plugins.

Basic Project Structure

For the most part, simple plugins will follow the same basic project structure:

helga_my_plugin
helga_my_plugin.py
LICENSE
MANIFEST.in
README.rst
setup.py
tests.py
tox.ini

helga_my_plugin.py This is the actual plugin script. This can be named whatever you feel like naming it, but it
is good practice to name this something like helga_<name of plugin>.py.

LICENSE Since helga is dual-licensed MIT and GPL, this can be either MIT or GPL

MANIFEST.in If you wish to include any non-python files with your plugin, you should include this file. For
example, if you wish to include the README and LICENSE, the contents of this file would be:

LICENSE
README.rst

README.rst Not required to be a reStructuredText document, but it is good practice to describe what the plugin
does, how to use it, and if there are any custom settings that should be set.

setup.py setuptools setup script (see setuptools and entry_points)

26 Chapter 6. Contents

helga Documentation, Release 1.7.12

tests.py If you write any unit tests for your plugin

tox.ini If you write any unit tests for your plugin and use tox to run them. It is generally a good idea to use tox to
run tests against python 2.6 and 2.7 since helga supports both of those versions.

setuptools and entry_points

Not only does a plugin’s setup.py file declare project information and allow it to be installed with pip, it is also how
helga loads plugins at runtime. To do this, helga uses a setuptools feature known as entry_points. To understand how
to use this, take the above project structure as an example. Let’s say that the contents of helga_my_plugin.py
looks like this:

from helga.plugins import match

@match(r'foo')
def foo(client, channel, nick, message, matches):

return u'{0} said foo'.format(nick)

A basic setup.py file for this project might look like:

from setuptools import setup, find_packages

setup(
name='helga_my_plugin',
version='0.0.1',
description='A foo plugin',
author="Jane Smith"
author_email="jane.smith@example.com",
packages=find_packages(),
py_modules=['helga_my_plugin'],
include_package_data=True,
zip_safe=True,
entry_points=dict(

helga_plugins=[
'my_plugin = helga_my_plugin:foo',

],
),

)

Before talking about entry_points, take note of some other important lines.

py_modules If your plugin is a single python file, you will need include it without the ‘.py’ extension in a string
list.

include_package_data If you intend on including files specified in a MANIFEST.in file, you will need to set
this to True.

Now, let’s talk about the entry_points line. The helga plugin loader will look for any installed python package
that declares helga_plugins entry points. These should be list of strings of the form:

plugin_name = module.path:decorated_function

The ‘plugin_name’ portion should be a simple name for the plugin, such as ‘my_plugin’ in the ‘helga_my_plugin’
example above. The latter half must be colon delimited containing a module path and the function decorated using
@command, @match, or @preprocessor. So if a file helga_my_plugin.py contains:

6.3. Plugins 27

https://tox.readthedocs.org/en/latest/
https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins

helga Documentation, Release 1.7.12

from helga.plugins import match

@match(r'foo')
def foo(*args):

return 'foo'

the entry point would be helga_my_plugin:foo. For more information and details on how entry points work,
see the entry_points documentation.

Distributing Plugins

The preferred distribution channel for helga plugins is PyPI so that plugins can be installed using pip. Once you have
properly packaged your plugin, submit it to PyPI:

$ python setup.py sdist register upload

Using A Project Template

If you use cookiecutter for managing project templates, there is a third-party helga plugin cookiecutter template here:
https://github.com/bigjust/cookiecutter-helga-plugin

6.3.10 Installing Plugins

If plugins are properly packaged and distributed according to Packaging and Distribution, then any new plugins for
helga to use can be installed using pip. If helga has been installed into a virtualenv as mentioned in Getting Started,
activate that virtualenv prior to installing the new plugin:

$ source bin/activate
$ pip install helga-my-plugin

Note, however, that you will need to full restart any running helga process in order to use the new plugins. This
behavior may change in future versions of helga. If a plugin is not distributed using PyPI, but is available via some
source repository, you can still install it with a little more work:

$ source bin/activate
$ git clone git@example.com:janedoe/helga-my-plugin.git src/helga-my-plugin
$ cd src/helga-my-plugin
$ python setup.py develop

Note, that installing a plugin will mean that it will be loaded when helga starts unless it is not included in the plugins
whitelist helga.settings.ENABLED_PLUGINS or it is listed in the plugins blacklist helga.settings.
DISABLED_PLUGINS The default behavior is that all plugins installed on the system are loaded and made available
for use in IRC.

With this in mind, installed plugins are available for use, but they may not immediately be so. Helga maintains a list of
plugin names that indicate which plugins should be enabled by default in a channel, which is configured via helga.
settings.DEFAULT_CHANNEL_PLUGINS. If a plugin name does not appear in this list, a user in a channel will
not be able to use it until it is enabled with the manager plugin:

<sduncan> !plugins enable my_plugin

28 Chapter 6. Contents

https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins
https://pypi.python.org/pypi
http://cookiecutter.readthedocs.org/en/latest/
https://github.com/bigjust/cookiecutter-helga-plugin

helga Documentation, Release 1.7.12

6.3.11 Class-Based Plugins

All of the above documentation for creating plugins makes use of helga’s simple decorator API. Generally speaking,
the decorator API is the preferred way of authoring plugins. However, simple decorated functions may not be robust
enough for all plugins. For this reason, there is a class-based API that can be used instead. In fact, this is what is used
behind the scenes for the decorator API.

Base Plugin Class

At a high level, plugin objects should be some form of a sublass of helga.plugins.Plugin:

class helga.plugins.Plugin(priority=50)
The base class for helga plugins. There are three main methods of this base class that are important for creating
class-based plugins.

preprocess

Run by the plugin registry as a preprocessing mechanism. Allows plugins to modify the channel, nick, and/or
message that other plugins will receive.

process

Run by the plugin registry to allow a plugin to process a chat message. This is the primary entry point for
plugins according to the plugin manager, so it should either return a response or not.

run

Run internally by the plugin, generally from within the process method. This should do the actual work to
generate a response. In other words, process should handle checking if the plugin should handle a message
and then return whatever run returns.

preprocess(client, channel, nick, message)
A preprocessing filter for plugins. This allows a plugin to modify a received message prior to that message
being handled by this plugin’s or other plugin’s process method.

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

• message – The full message string received from the server

Returns a three-tuple (channel, nick, message) containing any modifications

process(client, channel, nick, message)
This method of a plugin is called by helga’s plugin registry to process an incoming chat message. This
should determine whether or not the plugin run method should be called. If so, it should return whatever
return value run generates. If not, None should be returned.

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

6.3. Plugins 29

helga Documentation, Release 1.7.12

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

• message – The full message string received from the server

Returns None if the plugin should not run, otherwise the return value of the run method

run(client, channel, nick, message, *args, **kwargs)
Executes this plugin with a given message to generate a response. This should run without regard to
whether it should or should not for a given message. Note, that this is where the actual work for the plugin
should occur. Subclasses should implement this method.

A return value of None, an empty string, or empty list implies that no response should be sent via chat. A
non-empty string, list of strings, or raised ResponseNotReady implies a response to be sent.

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

• message – The full message string received from the server

Returns None if no response is to be sent back to the server, a non-empty string or list of strings
if a response is to be returned

Plugin implementations can subclass this base class directly, but there are convenience subclasses for each plugin type
that already do a lot of the heavy lifting.

Command Subclasses

To create a class-based command plugin, subclass helga.plugins.Command. For example:

from helga.plugins import Command

class FooCommand(Command):
command = 'foo'
aliases = ['f']
help = 'Return the foo count. Usage: helga (foo|f)'

def __init__(self, *args, **kwargs):
super(FooCommand, self).__init__(*args, **kwargs)
self.foo_count = 0

def run(self, client, channel, nick, message, cmd, args):
self.foo_count += 1
return u'Foo count is {0}'.format(self.foo_count)

Match Subclasses

To create a class-based match plugin, subclass helga.plugins.Match. For example:

30 Chapter 6. Contents

helga Documentation, Release 1.7.12

from helga.plugins import Match

class FooMatch(Match):
pattern = r'foo (\w+)'

def run(self, client, channel, nick, message, matches):
return u"{0} said 'foo' followed by '{1}'".format(nick, matches[0])

Or in the case of using a callable as a pattern:

import time

from helga.plugins import Match

class FooMatch(Match):

def __init__(self, *args, **kwargs):
super(FooMatch, self).__init__(*args, **kwargs)
self.pattern = self.match_foo

def match_foo(self, message):
if 'foo' in message:

return time.time()

def run(self, client, channel, nick, message, matches):
return u"{0} said 'foo' at {0}".format(nick, matches)

Preprocessor Subclasses

There is no direct Plugin subclass for preprocessor plugins. Preprocessors using the decorator API are merely
instances of the base Plugin class (see Base Plugin Class). However, to create a preprocessor plugin using a class-
based approach:

from helga.plugins import Plugin

def FooPreprocessor(Plugin):

def preprocess(self, client, channel, nick, message):
Ignore anything from nicks that start with a vowel
if nick[0] in 'aeiou':

return channel, nick, u''
return channel, nick, message

Packaging Class-Based Plugins

Class-based plugins are packaged in exactly the same manner as those using the decorator API (see Packaging and
Distribution). The only difference is with respect to entry points. Whereas with decorator plugins, the entry point
follows a ‘module:function’ pattern, class-based plugins follow a ‘module:class’ pattern. For example, given this
plugin in a file helga_foo.py:

from helga.plugins import Command

class FooCommand(Command):
pass

6.3. Plugins 31

helga Documentation, Release 1.7.12

The respective entry point string might look something like this:

foo = helga_foo:FooCommand

6.3.12 Supporting XMPP

You shouldn’t need to make any special changes to plugins if you follow the documenation above. However, remember
that helga was started as an IRC bot, so things work a bit more to that favor. Plugins will still receive client,
channel, nick, and message arguments.

Note, though, that values for channel will never be the full JID of a chat room. Instead, they will be the user
portion of the room JID, prepended with a ‘#’. For example:

bots@conf.example.com

would become a channel named #bots and private messages from:

user@host.com

would become a channel named user.

Nick values operate in a similar manner, only using the resource portion of the JID for group chat. For example:

bots@conf.example.com/foo

would become a nick named:

foo

and a private message from:

foo@host.com

would become a nick named:

foo

For more information about how this works see helga.comm.xmpp.Client.parse_channel() and helga.
comm.xmpp.Client.parse_nick().

6.4 Webhooks

As of helga version 1.3, helga includes support for pluggable webhooks that can interact with the running bot or
communicate via IRC. The webhook architecture is extensible much in the way that plugins work, allowing you to
create new or custom HTTP services.

6.4.1 Overview

The webhooks system has two important aspects and core concepts: the HTTP server and routes.

32 Chapter 6. Contents

helga Documentation, Release 1.7.12

HTTP Server

The webhooks system consists of an HTTP server that is managed by a command plugin named webooks. This plugin
is enabled by default and handles starting the HTTP server is started when helga successfully signs on to IRC. The
server process is configured to listen on a port specified by the setting WEBHOOKS_PORT.

The actual implementation of this HTTP server is a combination of a TCP listner using the Twisted reactor, and
twisted.web.server.Site with a single root resource (see WebhookRoot) that manages each registered
URL route.

Note: This server is managed via a plugin only so it can be controlled via IRC.

Routes

Routes are the plugins of the webhook system. They are essentially registered URL paths that have some programmed
behavior. For example, http://localhost:8080/github, or /github specifically, might be the registered
route for a webhook that announces github code pushes on an IRC channel. Routes are declared using a decorator (see
The @route Decorator), which will feel familiar to anyone with flask experience. At this time, routes also support
HTTP basic authentication, which is configurable with a setting WEBHOOKS_CREDENTIALS.

6.4.2 The @route Decorator

Much like the plugin system, webhook routes are created using an easy to use decorator API. At the core of this API
is a single decorator @route, which will feel familiar to anyone with flask experience:

helga.plugins.webhooks.route(path, methods=None)
Decorator to register a webhook route. This requires a path regular expression, and optionally a list of HTTP
methods to accept, which defaults to accepting GET requests only. Incoming HTTP requests that use a non-
allowed method will receive a 405 HTTP response.

Parameters

• path – a regular expression string for the URL path of the route

• methods – a list of accepted HTTP methods for this route, defaulting to ['GET']

Decorated routes must follow this pattern:

helga.plugins.webhooks.func(request, client)

Parameters

• request – The incoming HTTP request, twisted.web.http.Request

• client – The client connection. An instance of helga.comm.irc.Client or
helga.comm.xmpp.Client

Returns a string HTTP response

For example:

from helga.plugins.webhooks import route

@route(r'/foo')
def foo(request, client):

client.msg('#foo', 'someone hit the /foo endpoint')
return 'message sent'

6.4. Webhooks 33

http://flask.pocoo.org/
http://flask.pocoo.org/

helga Documentation, Release 1.7.12

Routes can be configured to also support URL parameters, which act similarly to django’s URL routing mechanisms.
By introducing named pattern groups in the regular expression string. These will be passed as keyword arguments to
the decorated route handler:

from helga.plugins.webhooks import route

@route(r'/foo/(?P<bar>[0-9]+)')
def foo(request, client, bar):

client.msg('#foo', 'someone hit the /foo endpoint with bar {0}'.format(bar))
return 'message sent'

6.4.3 Authenticated Routes

The webhooks system includes mechanisms for restricting routes to authenticated users. Note, that this is only sup-
ported to handle HTTP basic authentication. Auth credentials are currently limited to hard-coded username and
password pairs configured as a list of two-tuples, the setting WEBHOOKS_CREDENTIALS. Routes are declared as
requiring authentication using the @authenticated decorator:

For example:

from helga.plugins.webhooks import authenticated, route

@route(r'/foo')
@authenticated
def foo(request, client):

client.msg('#foo', 'someone hit the /foo endpoint')
return 'message sent'

Important: The @authenticated decorator must be the first decorator used for a route handler, otherwise the
authentication check will not happen prior to a route being handled. This requirement may change in the future.

6.4.4 Sending Non-200 Responses

By default, route handlers will send a 200 response to any incoming request. However, in some cases it may be
necessary to explicitly return a non-200 response. In order to accomplish this, a route handler can manually set the
response status code on the request object:

from helga.plugins.webhooks import route

@route(r'/foo')
def foo(request, client):

request.setResponseCode(404)
return 'foo is always 404'

In addition to this, route handlers can also raise helga.plugins.webhooks.HttpError:

from helga.plugins.webhooks import route, HttpError

@route(r'/foo')
def foo(request, client):

raise HttpError(404, 'foo is always 404')

34 Chapter 6. Contents

https://www.djangoproject.com/

helga Documentation, Release 1.7.12

6.4.5 Using Templates

When installed, helga will have pystache installed as well, which can be used for templating webhooks that produce
HTML responses. It is important though that any webhooks be packaged so that any external .mustache templates
are packaged as well, which can be done by adding to a MANIFEST.in file (see Packaging and Distribution):

recursive-include . *.mustache

6.4.6 Handling Unicode

Handling unicode for webhooks is not as strict as with plugins, but the same guidelines should follow. For example,
webhooks should return unicode, but know that unicode strings are explicitly encoded as UTF-8 byte strings. See the
plugin documentation Handling Unicode.

6.4.7 Accessing The Database

Database access for webhooks follows the same rules as for plugins. See the plugin documentation Accessing The
Database

6.4.8 Requiring Settings

Requiring settings for webhooks follows the same rules as for plugins. See the plugin documentation Requiring
Settings

6.4.9 Packaging and Distribution

Much like plugins, webhooks are also installable python modules. For that reason, the rules for packaging and
distributing webhooks are the same as with plugins (see plugin Packaging and Distribution). However, there is
one minor difference with respect to declaring the webhook entry point. Rather than indicating the webhook as a
helga_plugins entry point, it should be placed in an entry point section named helga_webhooks. For exam-
ple:

setup(
entry_points=dict(

helga_webhooks=[
'api = myapi:decorated_route'

]
)

)

6.4.10 Installing Webhooks

Webhooks are installed in the same manner that plugins are installed (see plugin Installing Plugins). And
much like plugins, there are settings to control both a whitelist and blacklist for loading webhook routes (see
ENABLED_PLUGINS and DISABLED_PLUGINS). To explicitly whitelist webhook routes to be loaded, use
ENABLED_WEBHOOKS. To explicitly blacklist webhook routes from being loaded, use DISABLED_WEBHOOKS.

_builtin:

6.4. Webhooks 35

https://github.com/defunkt/pystache

helga Documentation, Release 1.7.12

6.5 Builtin Features

Helga comes with many builtin plugins, webhooks, and features.

6.5.1 Supported Backends

As of version 1.7.0, helga supports IRC, XMPP, and HipChat out of the box. Note, however, that helga originally
started as an IRC bot, so much of the terminology will reflect that. The current status of XMPP and HipChat support
is very limited and somewhat beta. In the future, helga may have a much more robust and pluggable backend system
to allow connections to any number of chat services.

The default configuration assumes that you wish to connect to an IRC server. However, if you wish to connect to an
XMPP or HipChat server, see XMPP Configuration.

6.5.2 Builtin Plugins

Helga comes with several builtin plugins. Generally speaking, it is better to have independently maintained plugins
rather than modifying helga core. In fact, many of the plugins listed here may be retired as core plugins and moved to
externally maintained locations. This is mainly due to the fact that some are either not useful as core plugins or would
require more maintenance for helga core than should be needed.

Important: Some builtin plugins may be deprecated and removed in a future version of helga. They will be moved
and maintained elsewhere as independent plugins.

help

A command plugin to show help strings for any installed command plugin. Usage:

helga (help|halp) [<plugin>]

With no arguments, all command plugin help strings are returned to the requesting user in a private message.

manager

Important: This plugin requires database access for some features

A command plugin that acts as an IRC-based plugin manager. Usage:

helga plugins (list|(enable|disable) (<name> ...))

The ‘list’ subcommand will list out both enabled and disabled plugins for the current channel. For example:

<sduncan> !plugins list
<helga> Enabled plugins: foo, bar
<helga> Disabled plugins: baz

Both enable and disable will respectively move a plugin between enabled and disabled status on the current channel.
If a database connection is configured, both enable and disable will record plugins as either automatically enabled for
the current channel or not. For example:

36 Chapter 6. Contents

helga Documentation, Release 1.7.12

<sduncan> !plugins enable baz
<sduncan> !plugins list
<helga> Enabled plugins: foo, bar, baz
<sduncan> !plugins disable baz
<helga> Enabled plugins: foo, bar
<helga> Disabled plugins: baz

operator

Important: This plugin requires database access for some features

A command plugin that exposes some capabilities exclusively for helga operators. Operators are nicks with elevated
privileges configured via the OPERATORS setting (see Core Settings). Usage:

helga (operator|oper|op) (reload <plugin>|(join|leave|autojoin (add|remove)) <channel>
→˓).

Each subcommand acts as follows:

reload <plugin> Experimental. Given a plugin name, perform a call to the python builtin reload() of the
loaded module. Useful for seeing plugin code changes without restarting the process.

(join|leave) <channel> Join or leave a specified channel

autojoin (add|remove) <channel> Add or remove a channel from a set of autojoin channels. This features
requries database access.

ping

A simple command plugin to ping the bot, which will always respond with ‘pong’. Usage:

helga ping

webhooks

A special type of command plugin that enables webhook support (see Webhooks). This command is more of a high-
level manager of the webhook system. Usage:

helga webhooks (start|stop|routes)

Both start and stop are privileged actions and can start and stop the HTTP listener for webhooks respectively. To
use them, a user must be configured as an operator. The routes subcommand will list all of the URL routes known
to the webhook listener.

6.5.3 Builtin Webhooks

Helga also includes some builtin webhooks for use out of the box.

6.5. Builtin Features 37

helga Documentation, Release 1.7.12

announcements

The announcements webhook exposes a single HTTP endpoint for allowing the ability to post a message in an IRC
channel via an HTTP request. This webhook only supports POST requests and requires HTTP basic authentication
(see Authenticated Routes). Requests must be made to a URL path /announce/<channel> such as /announce/
bots and made with a POST parameter message containing the IRC message contents. The endpoint will respond
with ‘Message Sent’ on a successful message send.

logger

The logger webhook is a browsable web frontend for helga’s builtin channel logger (see Channel Logging). This
webhook is enabled by default but requires that channel logging is enabled for it to be of any use. Logs are shown in
a dated order, grouped by channel.

Without any configuration, this web frontend will allow browsing all channels in which the bot resides or has resided.
This behavior can be changed with the setting CHANNEL_LOGGING_HIDE_CHANNELS which should be a list of
channel names that should be hidden from the browsable web UI. NOTE: they can still be accessed directly.

This webhook exposes a root /logger URL endpoint that serves as a channel listing. The webhook will support any
url of the form /logger/<channel>/YYYY-MM-DD such as /logger/foo/2014-12-31.

6.5.4 Channel Logging

As of the 1.6 release, helga includes support for a simple channel logger, which may be useful for those wanting to
helga to, in addition to any installed plugins, monitor and save conversations that occur on any channel in which the
bot resides. This is a helga core feature and not managed by a plugin, mostly to ensure that channel logging always
happens with some level of confidence that no preprocess plugins have modified the message. Channel logging feature
can be either enabled or disabled via the setting CHANNEL_LOGGING.

Channel logs are kept in UTC time and stored in dated logfiles that are rotated automatically. These log files are written
to disk in a configurable location indicated by CHANNEL_LOGGING_DIR and are organized by channel name. For
example, message that occurred on Dec 31 2014 on channel #foo would be written to a file /path/to/logs/
#foo/2014-12-31.txt

The channel logger also includes a web frontend for browsing any logs on disk, documented as the builtin webhook
logger.

Note: Non-public channels (i.e. those not beginning with a ‘#’) will be ignored by helga’s channel logger. No
conversations via private messages will be logged.

6.6 API Documentation

6.6.1 helga.comm.irc

Twisted protocol and communication implementations for IRC

class helga.comm.irc.Client(factory=None)
An implementation of twisted.words.protocols.irc.IRCClient with some overrides derived from helga settings
(see Configuring Helga). Some methods are overridden to provide additional functionality.

38 Chapter 6. Contents

helga Documentation, Release 1.7.12

action(user, channel, message)
Handler for an IRC message. This method handles logging channel messages (if it occurs on a public
channel) as well as allowing the plugin manager to send the message to all registered plugins. Should the
plugin manager yield a response, it will be sent back over IRC.

Parameters

• user – IRC user string of the form {nick}!~{user}@{host}

• channel – the channel from which the message came

• message – the message contents

alterCollidedNick(nickname)
Called when the bot has a nickname collision. This will generate a new nick containing the perferred nick
and the current timestamp.

Parameters nickname – the nickname that was already taken

connectionLost(reason)
Called when the connection is shut down.

Clear any circular references here, and any external references to this Protocol. The connection has been
closed.

@type reason: L{twisted.python.failure.Failure}

connectionMade()
Called when a connection is made.

This may be considered the initializer of the protocol, because it is called when the connection is com-
pleted. For clients, this is called once the connection to the server has been established; for servers, this is
called after an accept() call stops blocking and a socket has been received. If you need to send any greeting
or initial message, do it here.

encoding = 'UTF-8'
The assumed encoding of IRC messages

erroneousNickFallback = None
A backup nick should the preferred nickname be taken. This defaults to a string in the form of the
preferred nick plus the timestamp when the process was started (i.e. helga_12345)

get_channel_logger(channel)
Gets a channel logger, keeping track of previously requested ones. (see Channel Logging)

Parameters channel – A channel name

Returns a python logger suitable for channel logging

irc_unknown(prefix, command, params)
Handler for any unknown IRC commands. Currently handles /INVITE commands

Parameters

• prefix – any command prefix, such as the IRC user

• command – the IRC command received

• params – list of parameters for the given command

is_public_channel(channel)
Checks if a given channel is public or not. A channel is public if it starts with ‘#’ and is not the bot’s
nickname (which occurs when a private message is received)

Parameters channel – the channel name to check

6.6. API Documentation 39

helga Documentation, Release 1.7.12

join(channel, key=None)
Join a channel, optionally with a passphrase required to join.

Parameters

• channel – the name of the channel to join

• key – an optional passphrase used to join the given channel

joined(channel)
Called when the client successfully joins a new channel. Adds the channel to the known channel list and
sends the join signal (see Signals/Notifications of Helga Events)

Parameters channel – the channel that has been joined

kickedFrom(channel, kicker, message)
Called when I am kicked from a channel.

leave(channel, reason=None)
Leave a channel, optionally with a reason for leaving

Parameters

• channel – the name of the channel to leave

• reason – an optional reason for leaving

left(channel)
Called when the client successfully leaves a channel. Removes the channel from the known channel list
and sends the left signal (see Signals/Notifications of Helga Events)

Parameters channel – the channel that has been left

lineRate = None
An integer, in seconds, if IRC messages should be sent at a limit of once per this many seconds. None
implies no limit. (setting RATE_LIMIT)

log_channel_message(channel, nick, message)
Logs one or more messages by a user on a channel using a channel logger. If channel logging is not
enabled, nothing happens. (see Channel Logging)

Parameters

• channel – A channel name

• nick – The nick of the user sending an IRC message

• message – The IRC message

me(channel, message)
Equivalent to: /me message

Parameters

• channel – The IRC channel to send the message to. A channel not prefixed by a ‘#’ will
be sent as a private message to a user with that nick.

• message – The message to send

msg(channel, message)
Send a message over IRC to the specified channel

Parameters

• channel – The IRC channel to send the message to. A channel not prefixed by a ‘#’ will
be sent as a private message to a user with that nick.

40 Chapter 6. Contents

helga Documentation, Release 1.7.12

• message – The message to send

nickname = None
The preferred IRC nick of the bot instance (setting NICK)

on_invite(inviter, invitee, channel)
Handler for /INVITE commands. If the invitee is the bot, it will join the requested channel.

Parameters

• inviter – IRC user string of the form {nick}!~{user}@{host}

• invitee – the nick of the user receiving the invite

• channel – the channel to which invitee has been invited

parse_nick(full_nick)
Parses a nick from a full IRC user string. For example from me!~myuser@localhost would return
me.

Parameters full_nick – the full IRC user string of the form {nick}!~{user}@{host}

Returns The nick portion of the IRC user string

password = None
A password should the IRC server require authentication (setting SERVER)

privmsg(user, channel, message)
Handler for an IRC message. This method handles logging channel messages (if it occurs on a public
channel) as well as allowing the plugin manager to send the message to all registered plugins. Should the
plugin manager yield a response, it will be sent back over IRC.

Parameters

• user – IRC user string of the form {nick}!~{user}@{host}

• channel – the channel from which the message came

• message – the message contents

signedOn()
Called when the client has successfully signed on to IRC. Establishes automatically joining channels.
Sends the signon signal (see Signals/Notifications of Helga Events)

sourceURL = 'http://github.com/shaunduncan/helga'
The URL where the source of the bot is found

userJoined(user, channel)
Called when a user joins a channel in which the bot resides. Responsible for sending the user_joined
signal (see Signals/Notifications of Helga Events)

Parameters

• user – IRC user string of the form {nick}!~{user}@{host}

• channel – the channel in which the event occurred

userLeft(user, channel)
Called when a user leaves a channel in which the bot resides. Responsible for sending the user_left
signal (see Signals/Notifications of Helga Events)

Parameters

• user – IRC user string of the form {nick}!~{user}@{host}

• channel – the channel in which the event occurred

6.6. API Documentation 41

helga Documentation, Release 1.7.12

userRenamed(oldname, newname)

Parameters

• oldname – the nick of the user before the rename

• newname – the nick of the user after the rename

username = None
A username should the IRC server require authentication (setting SERVER)

class helga.comm.irc.Factory
The client factory for twisted. Ensures that a client is properly created and handles auto reconnect if helga is
configured for it (see settings AUTO_RECONNECT and AUTO_RECONNECT_DELAY)

buildProtocol(address)
Build the helga protocol for twisted, or in other words, create the client object and return it.

Parameters address – an implementation of twisted.internet.interfaces.IAddress

Returns an instance of Client

clientConnectionFailed(connector, reason)
Handler for when the IRC connection fails. Handles auto reconnect if helga is configured for it (see settings
AUTO_RECONNECT and AUTO_RECONNECT_DELAY)

clientConnectionLost(connector, reason)
Handler for when the IRC connection is lost. Handles auto reconnect if helga is configured for it (see
settings AUTO_RECONNECT and AUTO_RECONNECT_DELAY)

6.6.2 helga.comm.xmpp

class helga.comm.xmpp.Client(factory)
The XMPP client that has predetermined behavior for certain events. This client assumes some default behavior
for multi user chat (MUC) by setting the conference host as conference.HOST using HOST in SERVER. A
specific MUC host can be specified using the key MUC_HOST in SERVER.

This client is also a bit opinionated when it comes to chat rooms and how room names and nicks are delivered to
plugins. Since helga originally started as an IRC bot, channels are sent to plugins as the user portion of the room
JID prefixed with ‘#’. For example, if a message is received from bots@conference.example.com/
some_user, the channel will be #bots. In this instance, plugins would see the user nick as some_user.
For private messages, a message received from some_user@example.com would result in an identical
channel and nick some_user.

factory
An instance of Factory used to create this client instance.

jid
The Jabber ID used by the client. A copy of the factory jid attribute.

nickname
The current nickname of the bot. Generally this is the user portion of the jid attribute, and the resource
portion of chat room JIDs, but the value is obtained via the setting NICK. For HipChat support, this should
be set to the user account’s Full Name.

stream
The raw data stream. An instance of twisted.words.protocols.jabber.xmlstream.XmlStream

format_channel(channel)
Formats a channel as a valid JID string. This will operate with a fallback of
channel@conference_host should any of the following conditions happen:

42 Chapter 6. Contents

helga Documentation, Release 1.7.12

• Parsing the channel as a JID fails with twisted.words.protocols.jabber.jid.InvalidFormat

• Either the user or host portion of the parsed JID is empty

Any prefixed ‘#’ characters are removed. For example, assuming a conference host of ‘conf.example.com’:

• #bots would return bots@conf.example.com

• bots would return bots@conf.example.com

• bots@rooms.example.com would return bots@rooms.example.com

• bots@rooms.example.com/resource would return bots@rooms.example.com

Parameters channel – The channel to format as a full JID. Can be a simple string, ‘#’ prefixed
string, or full room JID.

Returns The full user@host JID of the room

get_channel_logger(channel)
Gets a channel logger, keeping track of previously requested ones. (see Channel Logging)

Parameters channel – A channel name

Returns a python logger suitable for channel logging

is_public_channel(channel)
Checks if a given channel is public or not. A channel is public if it starts with ‘#’

Parameters channel – the channel name to check

join(channel, password=None)
Join a channel, optionally with a passphrase required to join. Channels can either be a full,
valid JID or a simple channel name like ‘#bots’, which will be expanded into something like
bots@conference.example.com (see format_channel())

Parameters

• channel – the name of the channel to join

• key – an optional passphrase used to join the given channel

joined(channel)
Called when the client successfully joins a new channel. Adds the channel to the known channel list and
sends the join signal (see Signals/Notifications of Helga Events)

Parameters channel – the channel that has been joined

leave(channel, reason=None)
Leave a channel, optionally with a reason for leaving

Parameters

• channel – the name of the channel to leave

• reason – an optional reason for leaving

left(channel)
Called when the client successfully leaves a channel. Removes the channel from the known channel list
and sends the left signal (see Signals/Notifications of Helga Events)

Parameters channel – the channel that has been left

log_channel_message(channel, nick, message)
Logs one or more messages by a user on a channel using a channel logger. If channel logging is not
enabled, nothing happens. (see Channel Logging)

6.6. API Documentation 43

mailto:user@host

helga Documentation, Release 1.7.12

Parameters

• channel – A channel name

• nick – The nick of the user sending an IRC message

• message – The IRC message

me(channel, message)
Equivalent to: /me message. This is more compatibility with existing IRC plugins that use this method.
Channels prefixed with ‘#’ are assumed to be multi user chat rooms, otherwise, they are assumed to be
individual users.

Parameters

• channel – The XMPP channel to send the message to. A channel not prefixed by a ‘#’
will be sent as a private message to a user with that nick.

• message – The message to send, which will be prefixed with ‘/me’

msg(channel, message)
Send a message over XMPP to the specified channel. Channels prefixed with ‘#’ are assumed to be multi
user chat rooms, otherwise, they are assumed to be individual users.

Parameters

• channel – The XMPP channel to send the message to. A channel not prefixed by a ‘#’
will be sent as a private message to a user with that nick.

• message – The message to send

on_authenticated(stream)
Handler for successful authentication to the XMPP server. Establishes automatically joining channels.
Sends the signon signal (see Signals/Notifications of Helga Events)

Parameters stream – An instance of twisted.words.protocols.jabber.xmlstream.XmlStream

on_connect(stream)
Handler for a successful connection to the server. Sets the client xml stream and starts the heartbeat service.

Parameters stream – An instance of twisted.words.protocols.jabber.xmlstream.XmlStream

on_disconnect(stream)
Handler for an unexpected disconnect. Logs the disconnect and stops the heartbeat service.

Parameters stream – An instance of twisted.words.protocols.jabber.xmlstream.XmlStream

on_init_failed(failure)
Handler for when client initialization fails. This should end contact with the server by sending the xml
footer.

Parameters failure – The element of the failure

on_invite(element)
Handler that responds to channel invites from other users. This will acknowledge the request by joining
the room indicated in the xml payload.

Parameters element – A <message/> element, instance of
twisted.words.xish.domish.Element

on_message(element)
Handler for an XMPP message. This method handles logging channel messages (if it occurs on a public
channel) as well as allowing the plugin manager to send the message to all registered plugins. Should the
plugin manager yield a response, it will be sent back.

44 Chapter 6. Contents

helga Documentation, Release 1.7.12

Parameters message – A <message/> element, instance of
twisted.words.xish.domish.Element

on_nick_collision(element)
Handler called when the server responds of nick collision with the bot. This will generate a new nick
containing the preferred nick and the current timestamp and attempt to rejoin the room it failed to join.

Parameters element – A <presence/> element, instance of
twisted.words.xish.domish.Element

on_ping(el)
Handler for server IQ pings. Automatically responds back with a PONG.

Parameters el – A <iq/> PING message, instance of twisted.words.xish.domish.Element

on_subscribe(element)
Handler that responds to ‘buddy requests’ from other users. This will acknowledge the request by approv-
ing it.

Parameters element – A <presence/> element, instance of
twisted.words.xish.domish.Element

on_user_joined(element)
Handler called when a user enters a public room. Responsible for sending the user_joined signal (see
Signals/Notifications of Helga Events)

Parameters element – A <presence/> element, instance of
twisted.words.xish.domish.Element

on_user_left(element)
Handler called when a user leaves a public room. Responsible for sending the user_left signal (see
Signals/Notifications of Helga Events)

Parameters element – A <presence/> element, instance of
twisted.words.xish.domish.Element

parse_channel(element)
Parses a channel name from an element. This follows a few rules to determine the right channel to use.
Assuming a ‘from’ jid of user@host/resource:

• If the element tag is ‘presence’, the user portion of the jid is returned with ‘#’ prefix

• If the element type is ‘groupchat’, the user portion of the jid is returned with a ‘#’ prefix

• If the element type is ‘chat’, but the host is the conference host name, the resource portion of the jid
is returned

• Otherwise, the user portion of the jid is returned

Parameters element – An instance of twisted.words.xish.domish.Element

Returns The channel portion of the XMPP jid, prefixed with ‘#’ if it’s a chat room

parse_message(message)
Parses the message body from a <message/> element, ignoring any delayed messages. If a message is
indeed a delayed message, an empty string is returned

Parameters message – A <message/> element, instance of
twisted.words.xish.domish.Element

Returns The contents of the message, empty string if the message is delayed

6.6. API Documentation 45

helga Documentation, Release 1.7.12

parse_nick(message)
Parses a nick from a full XMPP jid. This will also take special care to parse a nick as a user jid or a resource
from a room jid. For example from me@jabber.local would return me and bots@conference.
jabber.local/me would return me.

Parameters message – A <message/> element, instance of
twisted.words.xish.domish.Element

Returns The nick portion of the XMPP jid

ping()
Sends an IQ PING to the host server. Useful for establishing a heartbeat/keepalive

set_presence(presence)
Sends a <presence/> element to the connected server. Used to indicate online or available status

Parameters presence – The presence status string to send to the server

class helga.comm.xmpp.Factory
XMPP client factory. following twisted.words.protocols.jabber.client.XMPPClientFactory. Ensures that a client
is properly created and handles auto reconnect if helga is configured for it (see settings AUTO_RECONNECT
and AUTO_RECONNECT_DELAY).

By default the Jabber ID is set using the form USERNAME@HOST from SERVER, but a specific value can be
used with the JID key instead.

jid
The Jabber ID used by the client. Configured directly via JID in SERVER or indirectly as
USERNAME@HOST from SERVER. An instance of twisted.words.protocols.jabber.jid.JID.

auth
An instance of twisted.words.protocols.jabber.client.XMPPAuthenticator used for password authentication
of the server connection.

client
The client instance of Client

clientConnectionFailed(connector, reason)
Handler for when the XMPP connection fails. Handles auto reconnect if helga is configured for it (see
settings AUTO_RECONNECT and AUTO_RECONNECT_DELAY)

Parameters

• connector – The twisted conntector

• reason – A twisted Failure instance

Raises The given reason unless AUTO_RECONNECT is enabled

clientConnectionLost(connector, reason)
Handler for when the XMPP connection is lost. Handles auto reconnect if helga is configured for it (see
settings AUTO_RECONNECT and AUTO_RECONNECT_DELAY)

Parameters

• connector – The twisted conntector

• reason – A twisted Failure instance

Raises The given reason unless AUTO_RECONNECT is enabled

protocol
alias of twisted.words.protocols.jabber.xmlstream.XmlStream

46 Chapter 6. Contents

helga Documentation, Release 1.7.12

6.6.3 helga.db

pymongo connection objects and utilities

helga.db.client
A pymongo.mongo_client.MongoClient instance, the connection client to MongoDB

helga.db.db
A pymongo.database.Database instance, the default MongoDB database to use

helga.db.connect()
Connect to a MongoDB instance, if helga is configured to do so (see setting DATABASE). This will return the
MongoDB client as well as the default database as configured.

Returns A two-tuple of (pymongo.MongoClient, pymongo.database.Database)

6.6.4 helga.log

Logging utilities for helga

class helga.log.ChannelLogFileHandler(basedir)
A rotating file handler implementation that will create UTC dated log files suitable for channel logging.

compute_next_rollover()
Based on UTC now, computes the next rollover date, which will be 00:00:00 of the following day. For ex-
ample, if the current datetime is 2014-10-31 08:15:00, then the next rollover will be 2014-11-01 00:00:00.

current_filename()
Returns a UTC dated filename suitable as a log file. Example: 2014-12-15.txt

doRollover()
Perform log rollover. Closes any open stream, sets a new log filename, and computes the next rollover
time.

shouldRollover(record)
Returns True if the current UTC datetime occurs on or after the next scheduled rollover datetime. False
otherwise.

Parameters record – a python log record

class helga.log.UTCTimeLogFilter(name=”)
A log record filter that will add an attribute utcnow and utctime to a log record. The former is a utcnow
datetime object, the latter is the formatted time of day for utcnow.

filter(record)
Filter the log record and add two attributes:

• utcnow: the value of datetime.datetime.utcnow

• utctime: the time formatted string of utcnow in the form HH:MM:SS

helga.log.getLogger(name)
Obtains a named logger and ensures that it is configured according to helga’s log settings (see Log Settings).
Use of this is generally intended to mimic logging.getLogger with the exception that it takes care of formatters
and handlers.

Parameters name – The name of the logger to get

helga.log.get_channel_logger(channel)
Obtains a python logger configured to operate as a channel logger.

Parameters channel – the channel name for the desired logger

6.6. API Documentation 47

http://api.mongodb.org/python/current/

helga Documentation, Release 1.7.12

6.6.5 helga.plugins

Helga’s core plugin library containing base implementations for creating plugins as well as utilities for managing
plugins at runtime

helga.plugins.registry
A singleton instance of helga.plugins.Registry

helga.plugins.ACKS = ['roger', '10-4', 'no problem', 'will do', 'you got it', 'anything you say', 'sure thing', 'ok', 'right-o', 'consider it done']
A collection of pre-canned acknowledgement type responses

class helga.plugins.Command(command=”, aliases=None, help=”, priority=50, shlex=False)
A subclass of Plugin for command type plugins (see Plugin Types). Command plugins have a default priority
of PRIORITY_NORMAL

aliases = []
A list of command aliases. If a command ‘search’ has an alias list [‘s’], then ‘helga search foo’ and ‘helga
s foo’ will both run the command

command = ''
The command string, i.e. ‘search’ for a command ‘helga search foo’

help = ''
An optional help string for the command. This is used by the builtin help plugin

parse(botnick, message)
Parse the incoming message using the current nick of the bot, the defined command string of this object,
plus any aliases. Will return the actual command parsed (which could be an alias), plus either whitespaced
delimited list of strings that follow the parsed command, or shlex argument list if shlex is True.

Generally, this does not need to be implemented by subclasses

Parameters

• botnick – the current bot nickname

• message – the incoming chat message

Returns two-tuple consisting of the string of parsed command, and an argument list of strings
either whitespace delimited or shlex split.

process(client, channel, nick, message)
Parses the incoming message and determins if this command should run (i.e. if the primary command or
one of the aliases match).

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

• message – The full message string received from the server

Returns None if the plugin should not run, otherwise the return value of the run method

run(client, channel, nick, message, command, args)
Executes this plugin with a given message to generate a response. This should run without regard to
whether it should or should not for a given message. Note, that this is where the actual work for the plugin
should occur. Subclasses should implement this method.

48 Chapter 6. Contents

helga Documentation, Release 1.7.12

A return value of None, an empty string, or empty list implies that no response should be sent via chat. A
non-empty string, list of strings, or raised ResponseNotReady implies a response to be sent.

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

• message – The full message string received from the server

• cmd – The parsed command string which could be the registered command or one of the
command aliases

• args – The parsed command arguments as a list, i.e. any content following the command.
For example: helga foo bar baz would be ['bar', 'baz']

Returns String or list of strings to return via chat. None or empty string or list for no response

shlex = False
A boolean indicating whether or not to use shlex arg string parsing rather than naive whitespace splitting

class helga.plugins.Match(pattern=”, priority=25)
A subclass of Plugin for match type plugins (see Plugin Types). Matches have a default priority of
PRIORITY_LOW

match(message)
Matches a message against the pattern defined for this class. If the pattern attribute is a callable, it is
called with the message as its only argument and that value is returned. Otherwise, the pattern attribute is
used as a regular expression string argument to re.findall and that value is returned.

Parameters message – the message received from the server

Returns the result of re.findall if pattern is a string, otherwise the return value of calling
the pattern attribute with the message as a parameter

pattern = ''
A regular expression string used to match against a chat message. Optionally, this attribute can be a
callable that accepts a chat message string as its only argument and returns a value that can be evaluated
for truthiness.

process(client, channel, nick, message)
Processes a message sent by a user on a given channel. This will return None if the message does not
match the plugin’s pattern, or the return value of run if it does match. For this plugin to match an incoming
message, the return value of self.match() must return value that can be evaluated for truth. Generally,
subclasses should not have to worry about this method, and instead, should focus on the implementation
of run.

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

6.6. API Documentation 49

helga Documentation, Release 1.7.12

• message – The full message string received from the server

Returns None if the plugin should not run, otherwise the return value of the run method

run(client, channel, nick, message, matches)
Executes this plugin with a given message to generate a response. This should run without regard to
whether it should or should not for a given message. Note, that this is where the actual work for the plugin
should occur. Subclasses should implement this method.

A return value of None, an empty string, or empty list implies that no response should be sent via chat. A
non-empty string, list of strings, or raised ResponseNotReady implies a response to be sent.

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

• message – The full message string received from the server

• matches – The result of re.findall if decorated with a regular expression, otherwise
the return value of the callable passed to helga.plugins.match()

Returns String or list of strings to return via chat. None or empty string or list for no response

helga.plugins.PRIORITY_HIGH = 75
The value for high priority plugins. Configurable via setting PLUGIN_PRIORITY_HIGH

helga.plugins.PRIORITY_LOW = 25
The value for low priority plugins. Configurable via setting PLUGIN_PRIORITY_LOW

helga.plugins.PRIORITY_NORMAL = 50
The value for normal priority plugins. Configurable via setting PLUGIN_PRIORITY_NORMAL

class helga.plugins.Plugin(priority=50)
The base class for helga plugins. There are three main methods of this base class that are important for creating
class-based plugins.

preprocess

Run by the plugin registry as a preprocessing mechanism. Allows plugins to modify the channel, nick, and/or
message that other plugins will receive.

process

Run by the plugin registry to allow a plugin to process a chat message. This is the primary entry point for
plugins according to the plugin manager, so it should either return a response or not.

run

Run internally by the plugin, generally from within the process method. This should do the actual work to
generate a response. In other words, process should handle checking if the plugin should handle a message
and then return whatever run returns.

decorate(fn, preprocessor=False)
A helper for decorating a function to handle this plugin. This essentially just monkey patches the run or
preprocess method whith the given function. Decorated functions should accept whatever arguments
the subclass implementation sends to its run method. Also, instances/subclasses of Plugin are kept

50 Chapter 6. Contents

helga Documentation, Release 1.7.12

in a list attribute of the decorated function. This allows chainable decorators that function as intended.
Example usage:

def my_plugin(*args, **kwargs):
pass

p = Plugin()
p.decorate(my_plugin)
assert p in my_plugin._plugins

Parameters

• fn – function to decorate

• preprocessor – True if the function should be decorated as a preprocessor

preprocess(client, channel, nick, message)
A preprocessing filter for plugins. This allows a plugin to modify a received message prior to that message
being handled by this plugin’s or other plugin’s process method.

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

• message – The full message string received from the server

Returns a three-tuple (channel, nick, message) containing any modifications

priority = 50
The registered priority of the plugin

process(client, channel, nick, message)
This method of a plugin is called by helga’s plugin registry to process an incoming chat message. This
should determine whether or not the plugin run method should be called. If so, it should return whatever
return value run generates. If not, None should be returned.

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

• message – The full message string received from the server

Returns None if the plugin should not run, otherwise the return value of the run method

run(client, channel, nick, message, *args, **kwargs)
Executes this plugin with a given message to generate a response. This should run without regard to
whether it should or should not for a given message. Note, that this is where the actual work for the plugin
should occur. Subclasses should implement this method.

6.6. API Documentation 51

helga Documentation, Release 1.7.12

A return value of None, an empty string, or empty list implies that no response should be sent via chat. A
non-empty string, list of strings, or raised ResponseNotReady implies a response to be sent.

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

• message – The full message string received from the server

Returns None if no response is to be sent back to the server, a non-empty string or list of strings
if a response is to be returned

class helga.plugins.Registry
Simple plugin registry that handles dispatching messages to registered plugins. Plugins can be disabled
or enabled per channel. By default, all plugins are loaded, but not enabled on a channel unless it exists
in DEFAULT_CHANNEL_PLUGINS. This is done so that potentially annoying plugins can be enabled on-
demand. Plugin loading can be limited to a whitelist via ENABLED_PLUGINS or restricted to a blacklist via
DISABLED_PLUGINS.

plugins = {}
A dictionary mapping plugin names to decorated functions or Plugin subclasses

enabled_plugins = {}
A dictionary of enabled plugin names per channel, keyed by channel name

all_plugins
A set of all registered plugin names

disable(channel, *plugins)
Disable a plugin or plugins on a desired channel

Parameters

• channel – the desired chat channel

• *plugins – a list of plugin names to disable

enable(channel, *plugins)
Enable a plugin or plugins on a desired channel

Parameters

• channel – the desired chat channel

• *plugins – a list of plugin names to enable

get_plugin(name)
Get a plugin by name

Parameters name – the name of the plugin

Returns a plugin implementation (decorated function or Plugin sublclass)

load()
Load all plugins registered via setuptools entry point named helga_plugins and initialize them. For
example:

52 Chapter 6. Contents

helga Documentation, Release 1.7.12

entry_points = {
'helga_plugins': [

'plugin_name = mylib.mymodule:MyPluginClass',
],

}

Note that this loading honors plugin whitelists and blacklists from the settings ENABLED_PLUGINS and
DISABLED_PLUGINS respectively. If there are no whitelisted plugins, nothing is loaded. If a plugin is
in the blacklist, it is not loaded. If a plugin is not listed in the whitelist, it is not loaded.

preprocess(client, channel, nick, message)
Invoke the preprocess method for each plugin on a given channel according to plugin priority. Any
exceptions from plugins will be suppressed and logged.

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – the channel from which the message came

• nick – the nick of the user sending the message

• message – the original message received

Returns a three-tuple (channel, nick, message) containing modifications all preprocessor plug-
ins have made

prioritized(channel, high_to_low=True)
Obtain a list of enabled plugins for a given channel ordered according to their priority (see Plugin Priori-
ties). The default action is to return a list ordered from most important to least important.

Parameters

• channel – the chat channel for the enabled plugin list

• high_to_low – priority ordering, True for most important to least important.

process(client, channel, nick, message)
Invoke the process method for each plugin on a given channel according to plugin priority. Any ex-
ceptions from plugins will be suppressed and logged. All return values from plugin process methods
are collected unless the setting PLUGIN_FIRST_RESPONDER_ONLY is set to True or a plugin raises
ResponseNotReady , in which case the first plugin to return a response or raise ResponseNotReady
will prevent others from processing. All response strings are explicitly converted to unicode.

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – the channel from which the message came

• nick – the nick of the user sending the message

• message – the original message received

Returns a list of non-empty unicode response strings

register(name, fn_or_cls)
Register a decorated plugin function or Plugin subclass with a given name

Parameters

• name – the name of the plugin

6.6. API Documentation 53

helga Documentation, Release 1.7.12

• fn_or_cls – a decorated plugin function or Plugin subclass

Raises TypeError if the fn_or_cls argument is not a decorated plugin function or Plugin
subclass

reload(name)
Reloads a plugin with a given name. This is equivalent to finding the registered entry point module and
using the python builtin reload().

Parameters name – the desired plugin to reload

Returns True if reloaded, False if an exception occurred

exception helga.plugins.ResponseNotReady
Exception raised by plugins that perform some async operation using twisted deferreds. If the bot is configured
to only allow the first plugin response (by default), then any plugin raising this will prevent further plugin
execution

(see Communicating Asynchronously)

helga.plugins.command(command, aliases=None, help=”, priority=50, shlex=False)
A decorator for creating command plugins

Parameters

• command – The command string, i.e. ‘search’ for a command ‘helga search foo’

• aliases – A list of command aliases. If a command ‘search’ has an alias list [‘s’], then
‘helga search foo’ and ‘helga s foo’ will both run the command.

• help – An optional help string for the command. This is used by the builtin help plugin.

• priority – The priority of the plugin. Default is PRIORITY_NORMAL.

• shlex – A boolean indicating whether to use shlex arg string parsing rather than naive
whitespace splitting.

Decorated functions should follow this pattern:

helga.plugins.func(client, channel, nick, message, cmd, args)

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

• message – The full message string received from the server

• cmd – The parsed command string which could be the registered command or one of the
command aliases

• args – The parsed command arguments as a list, i.e. any content following the command.
For example: helga foo bar baz would be ['bar', 'baz']

Returns String or list of strings to return via chat. None or empty string or list for no response

helga.plugins.match(pattern, priority=25)
A decorator for creating match plugins

Parameters

54 Chapter 6. Contents

helga Documentation, Release 1.7.12

• pattern – A regular expression string used to match against a chat message. Optionally,
this argument can be a callable that accepts a chat message string as its only argument and
returns a value that can be evaluated for truthiness.

• priority – The priority of the plugin. Default is PRIORITY_LOW

Decorated match functions should follow this pattern:

helga.plugins.func(client, channel, nick, message, matches)

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

• message – The full message string received from the server

• matches – The result of re.findall if decorated with a regular expression, otherwise
the return value of the callable passed

Returns String or list of strings to return via chat. None or empty string or list for no response

helga.plugins.preprocessor(priority=50)
A decorator for creating preprocessor plugins

Parameters priority – The priority of the plugin. Default is PRIORITY_NORMAL

Decorated preprocessor functions should follow this pattern:

helga.plugins.func(client, channel, nick, message, matches)

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

• message – The full message string received from the server

Returns a three-tuple (channel, nick, message) containing any modifications

helga.plugins.random_ack()
Returns a random choice from ACKS

6.6.6 helga.plugins.webhooks

Webhook HTTP server plugin and core webhook API

Webhooks provide a way to expose HTTP endpoints that can interact with helga. A command plugin manages
an HTTP server that is run on a port specified by setting helga.settings.WEBHOOKS_PORT (default 8080).
An additional, optional setting that can be used for routes requiring HTTP basic auth is helga.settings.
WEBHOOKS_CREDENTIALS, which should be a list of tuples, where each tuple is a pair of (username, password).

6.6. API Documentation 55

helga Documentation, Release 1.7.12

Routes are URL path endpoints. On the surface they are just python callables decorated using @route. The route
decorated must be given a path regex, and optional list of HTTP methods to accept. Webhook plugins must be
registered in the same way normal plugins are registered, using setuptools entry_points. However, they must belong
to the entry_point group helga_webhooks. For example:

setup(entry_points={
'helga_webhooks': [

'api = myapi.decorated_route'
]

})

For more information, see Webhooks

exception helga.plugins.webhooks.HttpError(code, message=None, response=None)
A basic HTTP error.

@type status: L{bytes} @ivar status: Refers to an HTTP status code, for example C{http.NOT_FOUND}.

@type message: L{bytes} @param message: A short error message, for example “NOT FOUND”.

@type response: L{bytes} @ivar response: A complete HTML document for an error page.

class helga.plugins.webhooks.WebhookPlugin(*args, **kwargs)
A command plugin that manages running an HTTP server for webhook routes and services. Usage:

helga webhooks (start|stop|routes)

Both start and stop are privileged actions and can start and stop the HTTP listener for webhooks respec-
tively. To use them, a user must be configured as an operator. The routes subcommand will list all of the
URL routes known to the webhook listener.

Webhook routes are generally loaded automatically if they are installed. There are whitelist and blacklist con-
trols to limit loading webhook routes (see ENABLED_WEBHOOKS and DISABLED_WEBHOOKS)

add_route(fn, path, methods)
Adds a route handler function to the root web resource at a given path and for the given methods

Parameters

• fn – the route handler function

• path – the URL path of the route

• methods – list of HTTP methods that the route should respond to

control(action)
Control the running HTTP server. Intended for helga operators.

Parameters action – the action to perform, either ‘start’ or ‘stop’

list_routes(client, nick)
Messages a user with all webhook routes and their supported HTTP methods

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• nick – the nick of the chat user to message

run(client, channel, nick, msg, cmd, args)
Executes this plugin with a given message to generate a response. This should run without regard to
whether it should or should not for a given message. Note, that this is where the actual work for the plugin
should occur. Subclasses should implement this method.

56 Chapter 6. Contents

helga Documentation, Release 1.7.12

A return value of None, an empty string, or empty list implies that no response should be sent via chat. A
non-empty string, list of strings, or raised ResponseNotReady implies a response to be sent.

Parameters

• client – an instance of helga.comm.irc.Client or helga.comm.xmpp.
Client

• channel – The channel from which the message was received. This could be a public
channel like ‘#foo’, or in the event of a private message, could be the nick of the user
sending the message

• nick – The nick of the user sending the message

• message – The full message string received from the server

• cmd – The parsed command string which could be the registered command or one of the
command aliases

• args – The parsed command arguments as a list, i.e. any content following the command.
For example: helga foo bar baz would be ['bar', 'baz']

Returns String or list of strings to return via chat. None or empty string or list for no response

class helga.plugins.webhooks.WebhookRoot(*args, **kwargs)
The root HTTP resource the webhook HTTP server uses to respond to requests. This manages all registered
webhook route handlers, manages running them, and manages returning any responses generated.

add_route(fn, path, methods)
Adds a route handler function to the root web resource at a given path and for the given methods

Parameters

• fn – the route handler function

• path – the URL path of the route

• methods – list of HTTP methods that the route should respond to

chat_client = None
An instance of helga.comm.irc.Client or helga.comm.xmpp.Client

render(request)
Renders a response for an incoming request. Handles finding and dispatching the route matching the
incoming request path. Any response string generated will be explicitly encoded as a UTF-8 byte string.

If no route patch matches the incoming request, a 404 is returned.

If a route is found, but the request uses a method that the route handler does not support, a 405 is returned.

Parameters request – The incoming HTTP request, twisted.web.http.Request

Returns a string with the HTTP response content

routes = None
A dictionary of regular expression URL paths as keys, and two-tuple values of allowed methods, and the
route handler function

helga.plugins.webhooks.authenticated(fn)
Decorator for declaring a webhook route as requiring HTTP basic authentication. Incoming re-
quests validate a supplied basic auth username and password against the list configured in the setting
WEBHOOKS_CREDENTIALS. If no valid credentials are supplied, an HTTP 401 response is returned.

Parameters fn – the route handler to decorate

6.6. API Documentation 57

helga Documentation, Release 1.7.12

helga.plugins.webhooks.route(path, methods=None)
Decorator to register a webhook route. This requires a path regular expression, and optionally a list of HTTP
methods to accept, which defaults to accepting GET requests only. Incoming HTTP requests that use a non-
allowed method will receive a 405 HTTP response.

Parameters

• path – a regular expression string for the URL path of the route

• methods – a list of accepted HTTP methods for this route, defaulting to ['GET']

Decorated routes must follow this pattern:

helga.plugins.webhooks.func(request, client)

Parameters

• request – The incoming HTTP request, twisted.web.http.Request

• client – The client connection. An instance of helga.comm.irc.Client or
helga.comm.xmpp.Client

Returns a string HTTP response

6.6.7 helga.settings

Default settings and configuration utilities

Chat Settings

Settings that pertain to how helga operates with and connects to a chat server

helga.settings.NICK = 'helga'
The preferred nick of the bot instance. For XMPP clients, this will be used when joining rooms.

helga.settings.CHANNELS = [('#bots',)]
A list of channels to automatically join. You can specify either a single channel name or a two-tuple of channel
name, and password. For example:

CHANNELS = [
'#bots',
('#foo', 'password'),

]

Note that this setting is only for hardcoded autojoined channels. Helga also responds to /INVITE commands as
well offers a builtin plugin to configure autojoin channels at runtime (see operator)

For XMPP/HipChat support, channel names should either be the full room JID in the form of room@host or a
simple channel name prefixed with a ‘#’ such as #room. Depending on the configuration, the room JID will be
constructed using the MUC_HOST value of the SERVER setting or by prefixing ‘conference.’ to the HOST value.

helga.settings.SERVER = {'HOST': 'localhost', 'PORT': 6667, 'TYPE': 'irc'}
Dictionary of connection details. At a minimum this should contain keys HOST and PORT which default to
‘localhost’ and 6667 respectively for irc. Optionally, you can specify a boolean key SSL if you require helga to
connect via SSL. You may also specify keys USERNAME and PASSWORD if your server requires authentication.
For example:

58 Chapter 6. Contents

helga Documentation, Release 1.7.12

SERVER = {
'HOST': 'localhost',
'PORT': 6667,
'SSL': False,
'USERNAME': 'user',
'PASSWORD': 'pass',

}

Additional, optional keys are supported for different chat backends:

• TYPE: the backend type to use, ‘irc’ or ‘xmpp’

• MUC_HOST: the MUC group chat domain like ‘conference.example.com’ for group chat

• JID: A full jabber ID to use instead of USERNAME (xmpp only)

helga.settings.AUTO_RECONNECT = True
A boolean indicating if the bot automatically reconnect on connection lost

helga.settings.AUTO_RECONNECT_DELAY = 5
An integer for the time, in seconds, to delay between reconnect attempts

helga.settings.RATE_LIMIT = None
IRC Only. An integer indicating the rate limit, in seconds, for messages sent over IRC. This may help to prevent
flood, but may degrade the performance of the bot, as it applies to every message sent to IRC.

Core Settings

Settings that pertain to core helga features.

helga.settings.OPERATORS = []
A list of chat nicks that should be considered operators/administrators

helga.settings.DATABASE = {'DB': 'helga', 'HOST': 'localhost', 'PORT': 27017}
A dictionary containing connection info for MongoDB. The minimum settings that should exist here are
‘HOST’, the MongoDB host, ‘PORT, the MongoDB port, and ‘DB’ which should be the MongoDB collec-
tion to use. These values default to ‘localhost’, 27017, and ‘helga’ respectively. Both ‘USERNAME’ and
‘PASSWORD’ can be specified if MongoDB requires authentication. For example:

DATABASE = {
'HOST': 'localhost',
'PORT': 27017,
'DB': 'helga',
'USERNAME': 'foo',
'PASSWORD': 'bar',

}

Log Settings

helga.settings.LOG_LEVEL = 'DEBUG'
A string for the logging level helga should use for process logging

helga.settings.LOG_FILE = None
A string, if set, a string indicating the log file for python logs. By default helga will log directly to stdout

helga.settings.LOG_FORMAT = '%(asctime)-15s [%(levelname)s] [%(name)s:%(lineno)d]: %(message)s'
A string that is compatible with configuring a python logging formatter.

6.6. API Documentation 59

helga Documentation, Release 1.7.12

Channel Log Settings

See Channel Logging

helga.settings.CHANNEL_LOGGING = False
A boolean, if True, will enable conversation logging on all channels

helga.settings.CHANNEL_LOGGING_DIR = '.logs'
If CHANNEL_LOGGING is enabled, this is a string of the directory to which channel logs should be written.

helga.settings.CHANNEL_LOGGING_HIDE_CHANNELS = []
A list of channel names (either with or without a ‘#’ prefix) that will be hidden in the browsable channel log
web ui.

Plugin and Webhook Settings

Settings that control plugin and/or webhook behaviors. See Plugins or Webhooks

helga.settings.ENABLED_PLUGINS = True
A list of plugin names that should be loaded by the plugin manager. This effectively serves as a mechanism for
explicitly including plugins that have been installed on the system. If this value is True, the plugin manager will
load any plugin configured with an entry point and make it available for use. If it is None, or an empty list, no
plugins will be loaded. See Plugins for more information.

helga.settings.DISABLED_PLUGINS = []
A list of plugin names that should NOT be loaded by the plugin manager. This effectively serves as a mechanism
for explicitly excluding plugins that have been installed on the system. If this value is True, the plugin manager
will NOT load any plugin configured with an entry point. If it is None, or an empty list, no plugins will be
blacklisted. See Plugins for more information.

helga.settings.DEFAULT_CHANNEL_PLUGINS = True
A list of plugin names that should be enabled automatically for any channel. If this value is True, all plugins
installed will be enabled by default. If this value is None, or an empty list, no plugins will be enabled on
channels by default. See Plugins for more information.

helga.settings.ENABLED_WEBHOOKS = True
A list of whitelisted webhook names that should be loaded and enabled on process startup. If this value is True,
then all webhooks available are loaded and made available. An empty list or None implies that no webhooks
will be made available. See Webhooks for more details.

helga.settings.DISABLED_WEBHOOKS = None
A list of blacklisted webhook names that should NOT be loaded and enabled on process startup. If this value
is True, then all webhooks available are loaded and made available. An empty list or None implies that no
webhooks will be made available. See Webhooks for more details.

helga.settings.PLUGIN_PRIORITY_LOW = 25
Integer value for ‘low’ priority plugins (see Plugin Priorities)

helga.settings.PLUGIN_PRIORITY_NORMAL = 50
Integer value for ‘normal’ priority plugins (see Plugin Priorities)

helga.settings.PLUGIN_PRIORITY_HIGH = 75
Integer value for ‘high’ priority plugins (see Plugin Priorities)

helga.settings.PLUGIN_FIRST_RESPONDER_ONLY = True
A boolean, if True, the first response received from a plugin will be the only message sent back to the chat
server. If False, all responses are sent.

60 Chapter 6. Contents

helga Documentation, Release 1.7.12

helga.settings.COMMAND_PREFIX_BOTNICK = True
If a boolean and True, command plugins can be run by asking directly, such as ‘helga foo_command’. This can
also be a string for specifically setting a nick type prefix (such as @NickName for HipChat)

helga.settings.COMMAND_PREFIX_CHAR = '!'
A string char, if non-empty, that can be used to invoke a command without requiring the bot’s nick. For example
‘helga foo’ could be run with ‘!foo’.

helga.settings.COMMAND_ARGS_SHLEX = False
A boolean that controls the behavior of argument parsing for command plugins. If False, command plugin
arguments are parsed using a naive whitespace split. If True, they will be parsed using shlex.split. See Command
Plugins for more information. The default is False, but this shlex parsing will be the only supported means of
argument string parsing in a future version.

helga.settings.WEBHOOKS_PORT = 8080
The integer port the webhooks plugin should listen for http requests.

helga.settings.WEBHOOKS_CREDENTIALS = []
List of two-tuple username and passwords used for http webhook basic authentication

helga.settings.configure(overrides)
Applies custom configuration to global helga settings. Overrides can either be a python import path string like
‘foo.bar.baz’ or a filesystem path like ‘foo/bar/baz.py’

Parameters overrides – an importable python path string like ‘foo.bar’ or a filesystem path to a
python file like ‘foo/bar.py’

6.6.8 helga.util.encodings

Utilities for working with unicode and/or byte strings

helga.util.encodings.from_unicode(unistr, errors=’ignore’)
Safely convert unicode to a byte string by first checking if it already is a byte string before encoding. This
function assumes UTF-8 for byte strings and by default will ignore any encoding errors.

Parameters

• unistr – either unicode or a byte string

• errors – a string indicating how encoding errors should be handled (i.e. ‘strict’, ‘ignore’,
‘replace’)

helga.util.encodings.from_unicode_args(fn)
Decorator used to safely convert a function’s positional arguments from unicode to byte strings

helga.util.encodings.to_unicode(bytestr, errors=’ignore’)
Safely convert a byte string to unicode by first checking if it already is unicode before decoding. This function
assumes UTF-8 for byte strings and by default will ignore any decoding errors.

Parameters

• bytestr – either a byte string or unicode string

• errors – a string indicating how decoding errors should be handled (i.e. ‘strict’, ‘ignore’,
‘replace’)

helga.util.encodings.to_unicode_args(fn)
Decorator used to safely convert a function’s positional arguments from byte strings to unicode

6.6. API Documentation 61

helga Documentation, Release 1.7.12

62 Chapter 6. Contents

CHAPTER 7

Indices and Tables

• genindex

• modindex

• search

63

helga Documentation, Release 1.7.12

64 Chapter 7. Indices and Tables

Python Module Index

h
helga.comm.irc, 38
helga.comm.xmpp, 42
helga.db, 47
helga.log, 47
helga.plugins, 48
helga.plugins.webhooks, 55
helga.settings, 58
helga.util.encodings, 61

65

helga Documentation, Release 1.7.12

66 Python Module Index

Index

A
ACKS (in module helga.plugins), 48
action() (helga.comm.irc.Client method), 38
add_route() (helga.plugins.webhooks.WebhookPlugin

method), 56
add_route() (helga.plugins.webhooks.WebhookRoot

method), 57
aliases (helga.plugins.Command attribute), 48
all_plugins (helga.plugins.Registry attribute), 52
alterCollidedNick() (helga.comm.irc.Client method), 39
auth (helga.comm.xmpp.Factory attribute), 46
authenticated() (in module helga.plugins.webhooks), 57
AUTO_RECONNECT (in module helga.settings), 59
AUTO_RECONNECT_DELAY (in module

helga.settings), 59

B
buildProtocol() (helga.comm.irc.Factory method), 42

C
CHANNEL_LOGGING (in module helga.settings), 60
CHANNEL_LOGGING_DIR (in module helga.settings),

60
CHANNEL_LOGGING_HIDE_CHANNELS (in mod-

ule helga.settings), 60
ChannelLogFileHandler (class in helga.log), 47
CHANNELS (in module helga.settings), 58
chat_client (helga.plugins.webhooks.WebhookRoot at-

tribute), 57
Client (class in helga.comm.irc), 38
Client (class in helga.comm.xmpp), 42
client (helga.comm.xmpp.Factory attribute), 46
client (in module helga.db), 47
clientConnectionFailed() (helga.comm.irc.Factory

method), 42
clientConnectionFailed() (helga.comm.xmpp.Factory

method), 46
clientConnectionLost() (helga.comm.irc.Factory

method), 42

clientConnectionLost() (helga.comm.xmpp.Factory
method), 46

Command (class in helga.plugins), 48
command (helga.plugins.Command attribute), 48
command() (in module helga.plugins), 54
COMMAND_ARGS_SHLEX (in module helga.settings),

61
COMMAND_PREFIX_BOTNICK (in module

helga.settings), 60
COMMAND_PREFIX_CHAR (in module

helga.settings), 61
compute_next_rollover()

(helga.log.ChannelLogFileHandler method),
47

configure() (in module helga.settings), 61
connect() (in module helga.db), 47
connectionLost() (helga.comm.irc.Client method), 39
connectionMade() (helga.comm.irc.Client method), 39
control() (helga.plugins.webhooks.WebhookPlugin

method), 56
current_filename() (helga.log.ChannelLogFileHandler

method), 47

D
DATABASE (in module helga.settings), 59
db (in module helga.db), 47
decorate() (helga.plugins.Plugin method), 50
DEFAULT_CHANNEL_PLUGINS (in module

helga.settings), 60
disable() (helga.plugins.Registry method), 52
DISABLED_PLUGINS (in module helga.settings), 60
DISABLED_WEBHOOKS (in module helga.settings),

60
doRollover() (helga.log.ChannelLogFileHandler

method), 47

E
enable() (helga.plugins.Registry method), 52
enabled_plugins (helga.plugins.Registry attribute), 52
ENABLED_PLUGINS (in module helga.settings), 60

67

helga Documentation, Release 1.7.12

ENABLED_WEBHOOKS (in module helga.settings), 60
encoding (helga.comm.irc.Client attribute), 39
erroneousNickFallback (helga.comm.irc.Client attribute),

39

F
Factory (class in helga.comm.irc), 42
Factory (class in helga.comm.xmpp), 46
factory (helga.comm.xmpp.Client attribute), 42
filter() (helga.log.UTCTimeLogFilter method), 47
format_channel() (helga.comm.xmpp.Client method), 42
from_unicode() (in module helga.util.encodings), 61
from_unicode_args() (in module helga.util.encodings), 61

G
get_channel_logger() (helga.comm.irc.Client method), 39
get_channel_logger() (helga.comm.xmpp.Client method),

43
get_channel_logger() (in module helga.log), 47
get_plugin() (helga.plugins.Registry method), 52
getLogger() (in module helga.log), 47

H
helga.comm.irc (module), 38
helga.comm.xmpp (module), 42
helga.db (module), 47
helga.log (module), 47
helga.plugins (module), 48
helga.plugins.webhooks (module), 55
helga.settings (module), 58
helga.util.encodings (module), 61
help (helga.plugins.Command attribute), 48
HttpError, 56

I
irc_unknown() (helga.comm.irc.Client method), 39
is_public_channel() (helga.comm.irc.Client method), 39
is_public_channel() (helga.comm.xmpp.Client method),

43

J
jid (helga.comm.xmpp.Client attribute), 42
jid (helga.comm.xmpp.Factory attribute), 46
join() (helga.comm.irc.Client method), 39
join() (helga.comm.xmpp.Client method), 43
joined() (helga.comm.irc.Client method), 40
joined() (helga.comm.xmpp.Client method), 43

K
kickedFrom() (helga.comm.irc.Client method), 40

L
leave() (helga.comm.irc.Client method), 40

leave() (helga.comm.xmpp.Client method), 43
left() (helga.comm.irc.Client method), 40
left() (helga.comm.xmpp.Client method), 43
lineRate (helga.comm.irc.Client attribute), 40
list_routes() (helga.plugins.webhooks.WebhookPlugin

method), 56
load() (helga.plugins.Registry method), 52
log_channel_message() (helga.comm.irc.Client method),

40
log_channel_message() (helga.comm.xmpp.Client

method), 43
LOG_FILE (in module helga.settings), 59
LOG_FORMAT (in module helga.settings), 59
LOG_LEVEL (in module helga.settings), 59

M
Match (class in helga.plugins), 49
match() (helga.plugins.Match method), 49
match() (in module helga.plugins), 54
me() (helga.comm.irc.Client method), 40
me() (helga.comm.xmpp.Client method), 44
msg() (helga.comm.irc.Client method), 40
msg() (helga.comm.xmpp.Client method), 44

N
NICK (in module helga.settings), 58
nickname (helga.comm.irc.Client attribute), 41
nickname (helga.comm.xmpp.Client attribute), 42

O
on_authenticated() (helga.comm.xmpp.Client method),

44
on_connect() (helga.comm.xmpp.Client method), 44
on_disconnect() (helga.comm.xmpp.Client method), 44
on_init_failed() (helga.comm.xmpp.Client method), 44
on_invite() (helga.comm.irc.Client method), 41
on_invite() (helga.comm.xmpp.Client method), 44
on_message() (helga.comm.xmpp.Client method), 44
on_nick_collision() (helga.comm.xmpp.Client method),

45
on_ping() (helga.comm.xmpp.Client method), 45
on_subscribe() (helga.comm.xmpp.Client method), 45
on_user_joined() (helga.comm.xmpp.Client method), 45
on_user_left() (helga.comm.xmpp.Client method), 45
OPERATORS (in module helga.settings), 59

P
parse() (helga.plugins.Command method), 48
parse_channel() (helga.comm.xmpp.Client method), 45
parse_message() (helga.comm.xmpp.Client method), 45
parse_nick() (helga.comm.irc.Client method), 41
parse_nick() (helga.comm.xmpp.Client method), 45
password (helga.comm.irc.Client attribute), 41

68 Index

helga Documentation, Release 1.7.12

pattern (helga.plugins.Match attribute), 49
ping() (helga.comm.xmpp.Client method), 46
Plugin (class in helga.plugins), 50
PLUGIN_FIRST_RESPONDER_ONLY (in module

helga.settings), 60
PLUGIN_PRIORITY_HIGH (in module helga.settings),

60
PLUGIN_PRIORITY_LOW (in module helga.settings),

60
PLUGIN_PRIORITY_NORMAL (in module

helga.settings), 60
plugins (helga.plugins.Registry attribute), 52
preprocess() (helga.plugins.Plugin method), 51
preprocess() (helga.plugins.Registry method), 53
preprocessor() (in module helga.plugins), 55
prioritized() (helga.plugins.Registry method), 53
priority (helga.plugins.Plugin attribute), 51
PRIORITY_HIGH (in module helga.plugins), 50
PRIORITY_LOW (in module helga.plugins), 50
PRIORITY_NORMAL (in module helga.plugins), 50
privmsg() (helga.comm.irc.Client method), 41
process() (helga.plugins.Command method), 48
process() (helga.plugins.Match method), 49
process() (helga.plugins.Plugin method), 51
process() (helga.plugins.Registry method), 53
protocol (helga.comm.xmpp.Factory attribute), 46

R
random_ack() (in module helga.plugins), 55
RATE_LIMIT (in module helga.settings), 59
register() (helga.plugins.Registry method), 53
Registry (class in helga.plugins), 52
registry (in module helga.plugins), 48
reload() (helga.plugins.Registry method), 54
render() (helga.plugins.webhooks.WebhookRoot

method), 57
ResponseNotReady, 54
route() (in module helga.plugins.webhooks), 57
routes (helga.plugins.webhooks.WebhookRoot attribute),

57
run() (helga.plugins.Command method), 48
run() (helga.plugins.Match method), 50
run() (helga.plugins.Plugin method), 51
run() (helga.plugins.webhooks.WebhookPlugin method),

56

S
SERVER (in module helga.settings), 58
set_presence() (helga.comm.xmpp.Client method), 46
shlex (helga.plugins.Command attribute), 49
shouldRollover() (helga.log.ChannelLogFileHandler

method), 47
signedOn() (helga.comm.irc.Client method), 41
sourceURL (helga.comm.irc.Client attribute), 41

stream (helga.comm.xmpp.Client attribute), 42

T
to_unicode() (in module helga.util.encodings), 61
to_unicode_args() (in module helga.util.encodings), 61

U
userJoined() (helga.comm.irc.Client method), 41
userLeft() (helga.comm.irc.Client method), 41
username (helga.comm.irc.Client attribute), 42
userRenamed() (helga.comm.irc.Client method), 41
UTCTimeLogFilter (class in helga.log), 47

W
WebhookPlugin (class in helga.plugins.webhooks), 56
WebhookRoot (class in helga.plugins.webhooks), 57
WEBHOOKS_CREDENTIALS (in module

helga.settings), 61
WEBHOOKS_PORT (in module helga.settings), 61

Index 69

	About
	Supported Backends
	Features
	Contributing
	License
	Contents
	Getting Started
	Configuring Helga
	Plugins
	Webhooks
	Builtin Features
	API Documentation

	Indices and Tables
	Python Module Index

